Theoretical Study for Chemical Reactivity Descriptors of Tetrathiafulvalene in gas phase and solvent phases based on Density Functional Theory

Document Type : Original Article

Authors

1 University of Garmian

2 university of halabjah

Abstract

The aim of the study is to investigate the effects of solvent polarity on the frontier molecular orbitals energy gap and global chemical reactivity of Tetrathiafulvalene in order to understand the stability and reactivity of Tetrathiafulvalene in a different solvent medium. Density functional theory with (B3LYP/6-311++G) basis set was used to perform a variety of calculations in both the gas and solvent phases. Besides dipole moment, Mulliken charge distribution, and thermodynamic properties were calculated in five solvent phases namely (water, acetone, Tetrahydrofuran (THF), Carbon tetrachloride (CCl4), and benzene). The calculations were carried out using the Gaussian 09 software, and the results showed that the solvents have an effect on the optimized parameters. Moreover, Mulliken population analysis, and local reactivity as Fukui Functions (FFs) from the natural bond orbitals (NBO) charges are computed to understand the electrophile, nucleophile region, and chemical activity of the title molecule. The dipole moment in gas phase and solvent medium is 0.00 Debye. Also, it was observed that the global chemical reactivity parameters change depending on the molecular structure and polarity of the solvents. Tetrathiafulvalene molecule was observed to have greater stability (low reactivity) in the water solvent with an EHOMO-ELUMO energy gap of 3.946 eV while it has higher reactivity (low stability) in the gas phase with EHOMO-ELUMO energy gap of 3.872eV. finally, this result indicates that Tetrathiafulvalene is an excellent candidate for future studies of semiconductor and optoelectronic materials.

Keywords

  1. References

    1. Broggi, J., Terme, T., and Vanelle, P., 2014. Organic Electron Donors as Powerful Single‐Electron Reducing Agents in Organic Synthesis, Angewandte Chemie International Edition, 53(2), 384-413.
    2. Łapiński, A., 2016. Vibrational and Electronic Structure, Electron-Electron and Electron-Phonon Interactions in Organic Conductors Investigated by Optical Spectroscopy, Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences, 113.
    3. Pop, F., Riobé, F.o., Seifert, S., Cauchy, T., Ding, J., Dupont, N., Hauser, A., Koch, M., and Avarvari, N., 2013. Tetrathiafulvalene-1, 3, 5-triazines as (Multi) Donor–Acceptor Systems with Tunable Charge Transfer: Structural, Photophysical, and Theoretical Investigations, Inorganic chemistry, 52(9), 5023-5034.
    4. Bendjeddou, A., Abbaz, T., Gouasmia, A., and Villemin, D., 2016. Studies on Chemical Reactivity of p-aminophenyl Benzene-Fused Bis Tetrathiafulvalenes Through Quantum Chemical Approaches, American Journal of Applied Chemistry, 4(3), 104-110.
    5. Jeroundi, D., Chakroune, S., Elmsellem, H., El Hadrami, E., Ben-Tama, A., Elyoussfi, A., Dafali, A., Douez, C., and Hafez, B., 2017. 2, 3-(2-alkylthio)-6, 7-bis (2-alkylthio) TTF: a new and green synthetic anti-corrosive inhibitors for mild steel in 1.0 HCl.
    6. Schröder, H.V. and Schalley, C.A., 2018. Tetrathiafulvalene–a redox-switchable building block to control motion in mechanically interlocked molecules, Beilstein journal of organic chemistry, 14(1), 2163-2185.
    7. Jiang, H., Mazzanti, V., Parker, C.R., Broman, S.L., Wallberg, J.H., Lušpai, K., Brincko, A., Kjaergaard, H.G., Kadziola, A., and Rapta, P., 2015. Interactions between tetrathiafulvalene units in dimeric structures–the influence of cyclic cores, Beilstein journal of organic chemistry, 11(1), 930-948.
    8. Gnanamozhi, P., Pandiyan, V., Srinivasan, P., and Stephen, A.D., 2019. Exploring the Structure, Electron Density and HOMO-LUMO Studies of Tetrathiafulvalene (TTF) as Organic Superconductors: A DFT and AIM Analysis, Journal of Atomic, Molecular, Condensate and Nano Physics, 6(1), 33-43.
    9. U.D. Thangaraj, M. Rajagantham, K. Govindarajulu, J.P. Arulsamy, Journal of Physical Science 28 (2017).
    10. Flores-Holguín, N., Frau, J., and Glossman-Mitnik, D., 2019. A Comparison of Conceptual DFT and Molecular Electron Density Theory (MEDT) Descriptors of Local Chemical Reactivity Properties: Oxytocin and Vasopressin Peptide Hormones as Test Cases, MOJ Bioorganic Org. Chem, 2, 45-49.
    11. HEKİM, S., Azeez, Y.H., and Akpinar, S., The Theoretical Investigation of the HOMO, LUMO energies and Chemical Reactivity of C9H12 and C7F3NH5Cl Molecules, Journal of Physical Chemistry and Functional Materials, 2(1), 28-30.
    12. Qader, I.N., Mohammad, A., Azeez, Y.H., Agid, R.S., Hassan, H.S., and Al-Nabawi, S.H.M., Chemical Structural and Vibrational Analysis of Potassium Acetate: A Density Function Theory Study, Journal of Physical Chemistry and Functional Materials, 2(1), 22-24.
    13. Bharanidharan, S., Saleem, H., Subashchandrabose, S., Suresh, M., and Babu, N.R., 2017. FT-IR, FT-Raman and UV-Visible Spectral Analysis on (E)-N′-(thiophen-2-ylmethylene) Nicotinohydrazide, Arch Chem Res, 1, 2.
    14. Demircioğlu, Z., Kaştaş, Ç.A., and Büyükgüngör, O., 2015. Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2-methylphenylimino) methyl)-3-methoxyphenol, Journal of Molecular Structure, 1091, 183-195.
    15. Ismail, R., Suleiman, A., Gidado, A., Lawan, A., and Musa, A., 2019. Investigation of the Effects of Solvents on the Structural, Electronic and Thermodynamic Properties of Rosiglitazone Based on Density Functional Theory, Physical Science International Journal, 1-18.
    16. Wang, Y., Liu, Q., Qiu, L., Wang, T., Yuan, H., Lin, J., and Luo, S., 2015. Molecular structure, IR spectra, and chemical reactivity of cisplatin and transplatin: DFT studies, basis set effect and solvent effect, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 150, 902-908.
    17. Moorthy, N., Jobe Prabakar, P., Ramalingam, S., Periandy, S., and Pandian, G., 2015. Spectroscopic investigation of the stimulus of NLO property on acetone thiosemicarbazone using computational [HF and DFT] confinement, J Theor Comput Sci, 2(137), 2.
    18. Babu, N.S. and Jayaprakash, D., 2015. Global and reactivity descriptors studies of cyanuric acid tautomers in different solvents by using of density functional theory (DFT), HOMO, 1, 1.
    19. Canevet, D., Salle, M., Zhang, G., Zhang, D., and Zhu, D., 2009. Tetrathiafulvalene (TTF) derivatives: key building-blocks for switchable processes, Chemical Communications, (17), 2245-2269.
    20. Vektariene, A., Vektaris, G., and Svoboda, J., 2009. A theoretical approach to the nucleophilic behavior of benzofused thieno [3, 2-b] furans using DFT and HF based reactivity descriptors, Arkivoc: Online Journal of Organic Chemistry.
    21. Islam, M.J., Kumer, A., Sarker, N., Paul, S., and Zannat, A., 2019. The prediction and theoretical study for chemical reactivity, thermophysical and biological activity of morpholinium nitrate and nitrite ionic liquid crystals: A DFT study, Advanced Journal of Chemistry-Section A (Theoretical, Engineering and Applied Chemistry), 2(4, pp. 266-385), 316-326.
    22. E. AlShamaileh, Computational Chemistry 2 (2014) 43.
    23. Flores-Holguín, N., Frau, J., and Glossman-Mitnik, D., 2019. Chemical reactivity and bioactivity properties of the Phallotoxin family of fungal peptides based on Conceptual Peptidology and DFT study, Heliyon, 5(8), e02335.
    24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowskiand J, Fox DJ (2009) Gaussian 09,Revision B.01,Gaussian Inc. J Comput Chem, 30: 2785
    25. Abbaz, T., Bendjeddou, A., and Villemin, D., 2018. Molecular structure, HOMO, LUMO, MEP, natural bond orbital analysis of benzo and anthraquinodimethane derivatives, Pharmaceutical and Biological Evaluations, 5(2), 27-39.
    26. Villemin, D., Abbaz, T., and Bendjeddou, A., 2018. Molecular structure, HOMO, LUMO, MEP, natural bond orbital analysis of benzo and anthraquinodimethane derivatives.
    27. Parr, R.G. and Pearson, R.G., 1983. Absolute hardness: companion parameter to absolute electronegativity, Journal of the American Chemical Society, 105(26), 7512-7516.
    28. Srivastava, K., Shimpi, M.R., Srivastava, A., Tandon, P., Sinha, K., and Velaga, S.P., 2016. Vibrational analysis and chemical activity of paracetamol–oxalic acid cocrystal based on monomer and dimer calculations: DFT and AIM approach, RSC Advances, 6(12), 10024-10037.
    29. Khan, M.F., Rashid, R., Rahman, M.M., Al Faruk, M., RAHMAN, M.M., and RASHID, M.A., 2017. Effects of solvent polarity on solvation free energy, dipole moment, polarizability, hyperpolarizability and molecular reactivity of aspirin, Int. J. Pharm. Pharm. Sci, 9(2), 217-221.
    30. Parr, R.G. and Yang, W., 1984. Density functional approach to the frontier-electron theory of chemical reactivity, Journal of the American Chemical Society, 106(14), 4049-4050.
    31. Beltrán, J.I., Flores, F., Martínez, J.I., and Ortega, J.J.T.J.o.P.C.C., 2013. Energy Level Alignment in Organic–Organic Heterojunctions: The TTF/TCNQ Interface, 117(8), 3888-3894.
    32. Gnanamozhi, P., Pandiyan, V., Srinivasan, P., and Stephen, A.D., 2019. Exploring the Structure, Electron Density and HOMO-LUMO Studies of Tetrathiafulvalene (TTF) as Organic Superconductors: A DFT and AIM.
    33. Ebenso, E.E., Khaled, K., Shukla, S.K., Singh, A.K., Eddy, N., Saracoglu, M., Murulana, L.C., Kandemirli, F., Arslan, T., and Obot, I., 2012. Quantum chemical investigations on quinoline derivatives as effective corrosion inhibitors for mild steel in acidic medium.
    34. Sarker, M.N., Kumer, A., Islam, M.J., and Paul, S., 2019. A computational study of thermophysical, HOMO, LUMO, vibrational spectrum and UV-visible spectrum of cannabicyclol (CBL), and cannabigerol (CBG) using DFT, Asian Journal of Nanosciences and Materials, 2(4), 439-447.
    35. Vidhya, V., Austine, A., and Arivazhagan, M., 2019. Quantum chemical determination of molecular geometries and spectral investigation of 4-ethoxy-2, 3-difluoro benzamide, Heliyon, 5(11), e02365.
    36. Sangeetha, R., Seshadri, S., and MP, R., Sperctroscopic, Electronic Structure And Homo Lumo Analsis Of 4-Bromo-2-Fluoro-1-Nitrobenzene.