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 ABSTRACT 

In this paper, an optimization study is presented, focusing on steel trusses. The main goal of this 

study is to reduce the weight of truss structures using a Genetic Algorithm (GA), which is a widely 

acknowledged evolutionary-based method known for its efficiency in solving intricate optimization 

problems. The design problem formulation takes into account various constraints, such as displacement, 

tensile stress, and minimum size requirements. These constraints are implemented in MATLAB, utilizing 

the ANSI/AISC 360-16 Specification as a guideline for designing tension and compression members. To 

determine the optimal design, the approach involves considering discrete design variables. This is achieved 

by selecting sections from a database containing all available steel sections specified in the AISC Steel 

Construction Manual, ensuring practical and feasible design solutions. The efficiency of the algorithm is 

validated through its application to several plane truss types. Through a comparison of the outcomes 

obtained from the proposed algorithm with the results generated by CSI-ETABS software, it is 

demonstrated that this approach consistently yields better weight optimization. Overall, the study 

showcases the effectiveness of the GA-based algorithm in optimizing the weight of steel trusses. The results 

and implications of the findings are thoroughly discussed in the paper; this study has the potential to make 

a substantial contribution to the field of structural optimization and design. 
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1 INTRODUCTION 

The central aim of structural optimization is to achieve the most cost-efficient "objective function" 

while meeting specific requirements. In the context of structural optimization problems, the primary 

emphasis is often placed on minimizing the weight of the structure. Over the past few decades, truss 

structural optimization has emerged as a crucial and challenging field in structural engineering, attracting 

considerable attention from researchers (Omidinasab & Goodarzimehr, 2020). 

While taking into account every other pertinent restriction, the primary objective of structural design 

optimization is to figure out the ideal cross-sectional area, hence reducing the use of materials for each 

member. (Kumar et al., 2021). This research area has garnered significant interest among scholars and has 

become a vital subject of investigation in recent decades. 

Researchers have conducted extensive studies to improve optimization methods and expedite the 

structural analysis process. Genetic algorithms have been widely utilized in the sizing and topology 

optimization of truss structures. These algorithms are particularly advantageous in searching for an 

optimum in multimodal objective functions without the need for calculating gradients (Delyová et al., 2021). 
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Genetic algorithms, inspired by natural selection and genetics, have successfully resolved a variety 

of scientific and technological issues. They are considered an efficient means of finding optimal solutions 

in various problem domains (Feng et al., 1997). 

In practical applications, it is often desirable to choose design variables, such as cross-sectional areas 

of members and shapes of rolled sections, from commercially available options provided by manufacturers. 

However, optimization procedures sometimes yield non-commercially available sizes, and attempting to 

approximate them with the nearest available commercial sizes can make the design unfeasible and 

unnecessarily heavier. This challenge becomes more pronounced when dealing with discrete design 

variables  (Kumar et al., 2021). 

The suitability of genetic algorithms for discrete structural optimization of trusses has been studied, 

revealing their efficiency in handling discrete variables (Rajeev & Krishnamoorthy, 1992). They have also 

been successfully applied to topological optimization problems, including stress, buckling, and 

displacement constraints in trusses. Genetic algorithms serve as effective exploratory tools for evaluating 

topologies in discontinuous design space (Hajela & Lee, 1995). 

Real-coded genetic algorithms (RCGAs) have been successfully applied to optimize the sizing, 

topology, and layout of trusses, as demonstrated by (Deb & Gulati, 2001). Additionally, to improve the 

topology, size, and form of planar trusses, investigators like Cazacu and Grama suggested parameterization 

and encoding approaches utilizing evolutionary algorithms and finite element approaches. (Cazacu & 

Grama, 2014). These advancements have significantly contributed to the field of truss structural 

optimization. 

Weight optimization of plane trusses has been achieved using genetic algorithms (Neeraja et al., 

2017). Moreover, advanced optimization techniques, such as genetic algorithms, have been employed as 

auxiliary tools in structural design, leading to a considerable reduction in the volume of concrete used in 

foundations (Ede et al., 2018) (Lopes et al., 2019). 

Various studies have focused on optimizing truss structures with discrete cross-sectional areas 

(Kaveh & Mahdavi, 2014) (Stolpe, 2016) (Ho-Huu et al., 2016) (Wang & Ohmori, 2010). Fuzzy multi-

objective methods utilizing genetic algorithms have been proposed for truss optimization, especially when 

dealing with systems involving fuzzy goals and constraints (Kelesoglu, 2007). Additionally, topological 

optimization has been employed to modify the size and relationships of truss bars, resulting in significant 

volume and weight savings (Assimi et al., 2017). 

Hybrid algorithms that combine genetic programming with the Nelder-Mead method have been 

developed for the topology and size optimization of trusses, taking into account both static and dynamic 

constraints (Assimi et al., 2019). These algorithms introduce topological bits to determine the presence of 

bars in the structure, enabling faster variations in topology compared to using only zero-cross-section sizes 

(Delyová et al., 2021). 

Another hybrid technique, known as Particle Swarm Optimization and Genetic technique (PSOGA), 

was presented for getting the optimum design of the truss using discrete variables. Additionally, several 

new algorithms, such as HPSO, HPSACO, and improved versions of genetic algorithms, have been 

developed to achieve optimum designs with discrete variables (Omidinasab & Goodarzimehr, 2020). 

While continuous optimization procedures may lead to non-commercially available sizes, rounding 

off these values to the nearest accessible commercial sizes can render the design infeasible or uneconomical 

(Kumar et al., 2021). In structural engineering, many problems are inherently discrete, necessitating the 

introduction of effective algorithms capable of optimizing with discrete variables. Genetic algorithms have 

proven to be efficient in this regard, enabling the attainment of optimal solutions. Ongoing research aims 

to further enhance these algorithms and develop hybrid approaches to optimize truss structures more 

efficiently(Omidinasab & Goodarzimehr, 2020)(Delyová et al., 2021)(Sokół, 2011). 

In the realm of structural optimization, the pursuit of cost-efficient design while adhering to specific 

constraints remains a paramount objective. A focal point in this pursuit is the optimization of truss structures, 

with an emphasis on minimizing weight. This endeavour, however, is complicated by the discrete nature of 

design variables and the need for compatibility with commercially available sizes. While continuous 

optimization techniques offer valuable insights, they may generate non-commercial sizes that compromise 
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feasibility and cost-effectiveness. This paper addresses the challenge of optimizing truss structures, 

particularly in the context of discrete design variables, and explores the efficacy of genetic algorithms and 

their hybrids in achieving optimal solutions. By considering the interplay between structural efficiency, 

available materials, and discrete design variables, this research aims to enhance the applicability of 

optimization methods for practical engineering solutions. 

It is expected that authors will submit carefully written and proofread material. Careful checking for 

spelling and grammatical errors should be performed. The number of pages of the paper should be from 4 

to 8. 

Papers should clearly describe the background of the subject of the author's work, including the 

methods used, results and concluding discussion on the importance of the work. Papers are to be prepared 

in English, and SI units must be used. Technical terms should be explained unless they may be considered 

to be known to the conference community. The references should be numbered [1], or [2, 3], or [1, 4-6].  

 

2 DISCRETE AND CONTINUOUS OPTIMIZATION 

Truss optimization problems involve design variables that can take either discrete or continuous 

values. In the specific context of this paper, the sizing variables considered are discrete in nature. Whenever 

the choice of cross-sectional areas for members is restricted to a given range of profiles, the issue of truss 

design optimization necessitates a discrete formulation. Consequently, the member cross-sectional areas 

were directly obtained from a comprehensive database of AISC manual section profiles. As a result, the 

suggested algorithm is capable of handling simultaneously discrete and continuous variables in an efficient 

manner, accommodating the specific requirements of truss design optimization. 

 

3 THE DEVELOPMENT OF OBJECTIVE FUNCTION USING GENETIC ALGORITHM 

The genetic algorithm (GA) is a widely popular and easily implementable algorithm used in various 

research fields. Inspired by genetics and evolution, it represents design variables as binary individuals called 

chromosomes (Omidinasab & Goodarzimehr, 2020). The GA aims to create increasingly strong individuals 

within a population, making it suitable for optimization problems (Delyová et al., 2021) (Assimi et al., 

2019). The encoding of design variables is crucial for the effective exploration of the design space, while 

the formulation of the objective function and constraints should accurately reflect the specific requirements 

of the problem (Delyová et al., 2021). Holland's 1975 monograph (Hayes-Roth, 1975) and Goldberg's work 

from 1989 are significant contributions to the GA literature. The GA operates iteratively, selecting solution 

candidates from the population (Omidinasab & Goodarzimehr, 2020) (Delyová et al., 2021). A typical flow 

chart of the program is shown in Figure 1. 

In general, GA is defined as:  

1. Initialize the population P. 

2. Evaluate each individual in P. 

3. Repeat the following steps until a stopping condition is met: 

a. Select at least two individuals from P. 

b. Apply crossover process. 

c. Apply mutation to the individuals. 

d. Create new individuals in a separate population P’. 

e. Evaluate the individuals in P’. 

f. Update P to be equal to P’. 

4. Stop and end the algorithm. 

Utilizing a genetic algorithm (GA) together with the finite element method to find the optimal truss 

structure(Delyová et al., 2021). The FEM expresses the structural behaviour through a system of linear 

equations,  

𝐾(𝑥). 𝑢𝑗(𝑥) =  𝑃𝑗(𝑥); (𝑗 =  1, 2, . . , 𝑛)                                                                                     (1) 
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where the stiffness matrix (K), nodal displacements (𝑢𝑗), and load vectors (𝑃𝑗) are considered for 

each load case, and x is the vector of bar cross-section area indexes in AISC Database tables. 

Based on the correlation between stress and bar displacements, the nodal displacement vector may 

be used to calculate the stress in each bar (𝜎𝑗𝑖) (Delyová et al., 2021) (Sokół, 2011). Constraints are imposed 

on the stress (σi) and displacement (𝑢𝑗𝑘) magnitudes, ensuring that they do not exceed specified limits. 

The objective of the paper is to minimize the weight of the truss while satisfying compliance 

constraints. The weight (w(x)) is calculated as the sum of the product of the cross-sectional area (𝐴𝑖), length 

(𝐿𝑖), and material weight density (ρ) for each member. Additionally, stress (𝜎𝑖) must be below the allowable 

stress (𝜎𝑀) and Euler buckling constraint (𝜎𝐸𝑖) for all members (Sokół, 2011). 

The objective function is to minimize w(x) subjected to constraints Ci(x) < 0, i = 1,2,3, . . . where i 

is the number of constraints. 

𝑤(𝑥) = 𝛴 𝜌𝐴𝑖𝐿𝑖                                                                                                                                (2)    
As this is a constrained problem and GA performs better with unconstrained problems, it is necessary 

to transform the problem into an unconstrained one to optimize it using GAs. Some constraints cannot be 

directly expressed in terms of design variables and require the analysis of the truss structure (Kumar et al., 

2021). 
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Figure 1” Typical flow chart of GA used in optimization 

 

 

3.1 Tension member 

SLENDERNESS LIMIT 

For sections in tension, there may be no upper limit to slenderness L/r, preferably should not exceed 

300. 
𝐿

𝑟
≤  300                                                                                                                                                    (3) 

Slenderness Constraint for Tension member  
𝐿

𝑟
−  300 ≤ 0                                                                                                                                           (4) 
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The permissible tensile strength, ∅𝑡𝑃𝑛, and the allowable tensile strength, 𝑃𝑛/Ω𝑡, of tension members 

must be calculated. The smaller value is determined by the maximum tensile yield conditions in the gross 

section. 

Allowable force constraint 

For allowable stress design (ASD) 

𝑃𝑎 ≤
𝑃𝑛

𝛺𝑡
 ≤  

𝐹𝑦 𝐴𝑔

𝛺𝑡
               (𝐷2 − 1)                                                                                                         (5) 

Tensile strength Constraint 

𝑃𝑎 − 𝐹𝑦
 𝐴𝑔

𝛺𝑡
≤  0                                                                                                                                      (6) 

Ultimate member force constraint 

For Load and resistant factored design LRFD 

𝑃𝑢 ≤  𝜑𝑡 𝑃𝑛 ≤  𝜑𝑡 𝐹𝑦 𝐴𝑔                       (𝐷2 − 1)                                                                                (7) 

Tensile strength Constraint 

𝑃𝑢 −  𝜑𝑡 𝐹𝑦 𝐴𝑔 ≤ 0                                                                                                                              (8) 

Where 

Ag gross area of member 

Fy specified minimum yield stress, ksi (MPa) 

φt= 0.90 (LRFD),   Ωt = 1.67 (ASD) 

 

3.2 Compression members 

Compression members can fail in various modes, each with distinct characteristics and causes. These 

failure modes and their corresponding limit states are addressed in the AISC Specification in sections E3, 

E4, and E7(Committee, 2016)[32] as shown in table AISCM Table E1.1. Understanding these modes is 

essential for ensuring the structural integrity and safety of compression members under axial compression 

loads. 

One such mode is flexural buckling, which can be either elastic or inelastic, depending on the 

slenderness ratio of the member (Sokół, 2011). 

Another failure mode is torsional buckling, where the member twists about its longitudinal axis 

without experiencing any lateral displacement. 

Lateral-torsional or flexural-torsional buckling is a combined failure mode observed in wide flange 

sections. It arises from the flexural compression stresses on the compression flange of a beam or column 

with large unbraced lengths. 

Lastly, local buckling occurs when certain slender components of the structural member, such as the 

web and flanges, undergo local buckling. 

 

SLENDERNESS LIMITATIONS 

According to AISC, to ensure the stability of members designed for compression, it is preferable that 

Lc / r, is not more than 200. 
𝐿𝑐

𝑟
≤  200                                                                                                                                   (9) 

The Slenderness constraint for compression member is 
𝐿𝑐

𝑟
−  200 ≤ 0                                                                                                                            (10) 

where 

K is the effective length factor for pin-connected members as per AISC Table C-A-7.1; K = 1. 

Lc is the effective length of a member. 

L is unbraced length. 

r is the radius of gyration. 
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LOCAL BUCKLING OF COMPRESSION MEMBERS, 

Slenderness of member elements  

This section focuses on examining local instability of each element inside a compression member 

(refer to Figure 2). Instability occurs when these elements become slender, leading to reduced strength and 

limiting the compression member's axial compression capacity. 

To prevent local buckling (see Figure 3), the AISC specification (Committee, 2016) sets specific 

limits for the width-to-thickness ratios (λp and λr) of elements forming the compression member. These 

restrictions can be found in section B4 of the AISC Specification (Table B4.1a). 

In members with slender elements, the cross-section does not reach yield point, and the strength is 

controlled by local buckling, which is not recommended due to their inefficiency and lack of cost-

effectiveness (Sokół, 2011). 

Their width-to-thickness ratios influence the axial compression buckling strength of compression 

elements, λ. The value of λr categorizes a column element as non-slender (λ ≤ λr) or slender (λ > λr), 

depending on whether the element is stiffened or unstiffened. These critical values are provided in AISCM 

Table B4.1a. 

It's crucial to note that the value of λ is accessible in the AISC section database, which is then utilized 

for analysis. 

In addition to the previous classification, it is essential to categorize each element as either stiffened 

or unstiffened based on their support conditions (see Figure 3). The proposed algorithm takes into account 

different constraints and limitations specific to each element. 

 

 
Figure 2 element type in W shape  

 
Figure 3 local buckling of an 

element 

Euler critical buckling load for the members is provided by Equations (11 and 12)  for the x and y 

directions, respectively. 

𝐹𝑒𝑥 =
𝜋2𝐸

𝐿𝑐𝑥

𝑟𝑥

2 ;                  (𝐸3 −

4)                                                                                                                              (11) 

𝐹𝑒𝑦 =
𝜋2𝐸

𝐿𝑐𝑥

𝑟𝑦

2 ;                  (𝐸3 −

4)                                                                                                                             (12) 

 

COMPRESSION MEMBER STRENGTH, 

The AISC Specification defines the design compressive strength (φcPn) and allowable compressive 

strength (Pn / Ωc) for the flexural buckling limit state. The nominal compressive strength (Pn) is determined 

Unstiffene

d element stiffene

d element 
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based on the lowest value obtained after considering the applicable limit states of flexural buckling, 

torsional buckling, and flexural-torsional buckling. 

𝜙𝑐  =  0.90 (𝐿𝑅𝐹𝐷)     Ω𝑐  =  1.67 (𝐴𝑆𝐷) 

The nominal axial compression strength is given as 

𝑃𝑛 =  𝐹𝑐𝑟𝐴𝑔     (𝐸3 −
2)                                                                                                                                    (13) 

The calculation of the axial compressive strength according to the LRFD technique is provided as 

𝑃𝑢 ≤ (𝜙𝑐  𝑃𝑛  =  𝜙𝑐  𝐹𝑐𝑟𝐴𝑔)                                                                                                                                     (14) 

Thus, the Compressive strength Constraint is determined as  

𝑃𝑢 − 𝜙𝑐  𝑃𝑛 ≤
0                                                                                                                                                      (15) 

While permitted axial compressive load using the ASD technique is stated as 

𝑃𝑎 ≤
𝑃𝑛

𝛺𝑐
=

𝐹𝑐𝑟𝐴𝑔

𝛺𝑐
                                                                                                                                                     (16) 

So, the compressive strength Constraint using the ASD method  

𝑃𝑎 −
𝑃𝑛

𝛺𝑐
≤ 0                                                                                                                                                         (17) 

Where Pn is the nominal compressive strength, Fcr is the flexural buckling stress, 𝜙𝑐is 0.90, and Ωc 

is 1.67. 

 

FLEXURAL BUCKLING OF MEMBERS WITHOUT SLENDER ELEMENTS 

The nominal compressive strength, Pn, shall be determined based on the limit state of flexural 

buckling: 

In equation E3-2.  

The AISC critical flexural buckling stress, Fcr, is determined as follows: 

Critical stress in for buckling about x-axis  

when (
𝑙𝑐𝑥

𝑟𝑥
≤  4.71√

𝐸

𝐹𝑦
)  i.e inelastic behavior (the member buckles inelastically)  

𝐹𝑐𝑟𝑥(𝑖) = 0.658
𝐹𝑦

𝐹𝑒𝑥(𝑖) ∗ 𝐹𝑦;      %(𝐸3 − 2)                                                                                                (18) 

when (
𝑙𝑐𝑥

𝑟𝑥
 >  4.71√

𝐸

𝐹𝑦
) i.e elastic behavior (the member buckles elastically) 

𝐹𝑐𝑟𝑥(𝑖)  = 0.877 ∗ 𝐹𝑒𝑥(𝑖);                   %(𝐸3 − 3)                                                                                  (19) 

Minimum critical stress in both directions will control the design  

𝐹𝑐𝑟(𝑖) = 𝑚𝑖𝑛(𝐹𝑐𝑟𝑥(𝑖), 𝐹𝑐𝑟𝑦(𝑖))                                                                                                               (20) 

 

Equations (18) through (20) address the global flexural buckling of the compression member; 

however, they do not take into account the local buckling of the individual components within the 

compression member. 

 

TORSIONAL AND FLEXURAL-TORSIONAL BUCKLING OF MEMBERS WITHOUT 

SLENDER ELEMENTS 

Some doubly symmetric members without slender elements, are considered slender when the lateral 

unbraced length exceeds the torsional unbraced length. In such cases, the nominal compressive strength 

(Pn=Fcr Ag) is determined based on the limit states of torsional and flexural-torsional buckling. 

The critical stress, Fcr, is calculated using the flexural buckling equations (18) to (20). Additionally, 

elastic buckling stress Fe, for such a case, must be computed as shown below: 

For members that are doubly symmetrical and twist about the shear centre (W, M, S, HP, and HSS), 
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𝐹𝑒 = (𝜋^2 ∗ 𝐸.∗ 𝐶𝑤./𝐿𝑐𝑧. ^2 + 𝐺.∗ 𝐽).∗ 1/(𝐼𝑥 +
𝐼𝑦)                                                                                (21) 

 

 

MEMBERS WITH SLENDER ELEMENTS  

As described in Section B4.1 AISC, such compression members have a width-to-thickness ratio that 

exceeds λr, making them classified as slender-element sections. 

To determine compressive strength (Pn), a minimum value is chosen depending on the limit states of 

flexural buckling, torsional buckling, and flexural-torsional buckling, taking into account their interaction 

with local buckling. For members with slender elements, the Determination of axial compressive strength 

follows the guidelines provided in Section E7 of the AISC Specification.  

Note that all of these criteria are taken into account in the design program.  

 

Program Description 

The software was developed by combining the Genetic Algorithm (GA) and the Finite Element 

Method (FEM). The GA, inspired by natural selection, finds optimal solutions for complex problems where 

traditional methods are inadequate. It lacks a user-friendly interface, operating in a batch mode via 

MATLAB input and output files. FEM is employed for structural analysis. 

In ETABS (Extended Three-Dimensional Analysis of Building Systems), the "Auto Select Design" 

method automates selecting optimal design sections for structural members. It utilizes predefined codes and 

criteria, considering loads, member properties, and constraints, streamlining the design process while 

ensuring structural integrity. 

 

3.3 Numerical Examples & Comparison between ETABS and GA  

This section introduces various truss structures that incorporate discrete variables; 3-member 

truss(3M1L),5-member truss(5M1L), 9-member truss(9M1L), 13-member truss(13M1L), and 17-member 

truss(17M1L), all are under single concentric load(1L),9-member truss(9M3L), 13-member truss(13M3L), 

and 17-member truss(17M3L) under three concentric loads (3L), design variables in each structure equal 

to the number of the members. All examples in this section involve a comparison of Genetic Algorithm 

(GA) results with results obtained through CSi ETABS Optimum Design. For all members in the truss 

structures, the stress limit is set to 50 ksi (344.737 MPa) in both tension and compression. The material 

density is 0.2836 lb/in.³ (7850 kg/m³), and the modulus of elasticity is 29000 ksi (199948 MPa). These 

material properties remain consistent across all the examples. Two load cases are considered: a single 

concentric load and three concentric loads. 

Eight examples have been solved, and their corresponding design outcomes are illustrated in the 

subsequent figures. Each example is accompanied by a dedicated figure that portrays the geometric 

configuration of the structure, the applied load conditions, the structural sections designated by ETABS, as 

well as the optimal sections recommended by the proposed algorithm. Furthermore, a time history profile 

is provided to visually elucidate the progressive optimization process. Complementary to this visual 

representation, a comprehensive tabular presentation in Table 3 showcases the optimal weights as 

ascertained by both ETABS and the Genetic Algorithm (GA), alongside the weight reduction ratio for each 

specific example. 
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Figure 4 3M1L truss ETAB results 

 
Figure 5 3M1L truss GA results 

 
Figure 6 Optimization history of 3M1L truss 

 
Figure 7 5M1L truss ETAB results 

 
Figure 8 5M1L truss GA results 

 
Figure 9 Optimization history of 5M1L truss 

 
Figure 10 9M1L truss ETAB results 

 
Figure 11 9M1L GA results 
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Figure 12 Optimization history of 9M1L truss 

 
Figure 13 13M1L truss ETAB results 

 
Figure 14 13M1L GA results 

 
Figure 15 Optimization history of 13M1L truss 

 
Figure 16- 17M1L truss ETAB results 

 
Figure 17- 17M1L truss GA results 

 
Figure 18-Optimization history of 17M1L truss 

 
Figure 19 -9M3L truss ETAB results 
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Figure 20-9M3L truss GA results 

 
Figure 21- Optimization history of 9M3L truss 

 
Figure 22-geometry of 13M3L 

 
Figure 23-13M3L truss ETAB results 

 
Figure 24 13M3L truss GA results  

 
Figure 25-Optimization history of 13M3L truss 

 
Figure 26- geometry of 17M3L 

 
Figure 27-17M3L truss ETAB results 
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Figure 28-17M3L truss GA results 

 
Figure 29-Optimization history of 17M3L truss 

 

3.4 Result discussion and conclusion  

This research article presents a genetic algorithm (GA) methodology for the optimization of sizing 

aspects of planar truss structures, taking into consideration stress, displacement, and buckling constraints. 

All constraint in the AISC specification is taken in to consideration. In addition to that the program take the 

data for real section provided in AISC specification manual. Slender and non-slender elements is also taken 

in to account in calculation of local buckling. The nominal compressive strength (Pn) is determined based 

on the lowest value obtained after considering the applicable limit states of flexural buckling, torsional 

buckling, and flexural-torsional buckling. The optimization process involves an initial global search, 

followed by a gradual transition towards local tuning during the later stages. 

The effectiveness of the proposed GA approach is assessed through the examination of nine 

representative weight minimization problems involving planar truss structures with discrete design 

variables. For each test case, ten independent GA runs are conducted. To evaluate the computational 

efficiency of the algorithm, a comparative analysis is performed between each test case and the auto select 

optimization method implemented in the CSI ETABS program. The results obtained demonstrate the 

efficiency, reliability, and robustness of the proposed GA methodology. 

A summary of the optimization outcomes is presented in Table 1.  

Table 1 The summary of optimization results 

 

load case  Truss  Optimum Weight 

 (Kips) 

Wt. 

GA/CSI  

Wt. Re-

duction 

ratio  Type Name No. 

Mem 
Csi 

ETABS, 

kip 

GA , kip 

si
n

g
le

 

 c
o

n
ce

n
tr

ic
 

 l
o

ad
 

3 member 3M1L 3 1.203 0.853 0.71 0.29 

5 member 5M1L 5 1.2054 0.9387 0.78 0.22 

9 member 9M1L 9 1.013 0.8049 0.79 0.21 

13 member 13M1L 13 1.098 0.8906 0.81 0.19 

17 member 17M1L 17 1.1299 0.924 0.82 0.18 

 

 
  

    

th
re

e 

 c
o

n
ce

n
tr

ic
 

 l
o

ad
s 

9 member 9M3L 9 1.6385 1.2865 0.79 0.21 

13 member 13M3L 13 1.724 1.3722 0.8 0.2 

17 member 17M3L 17 1.7286 1.3765 0.8 0.2 
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Furthermore, Figure 30 illustrates the comparison of results, indicating that the optimal weight for 

the 9M1L topology is 1.013 kips for the ETABS optimization method and 0.8049 kips for the GA 

optimization method. This finding suggests that the 9M1L topology is the most favourable among the five 

cases considered. Notably, Figure 31 provides evidence that the GA consistently outperforms the ETABS 

method across all truss configurations. 

 

 
Figure 30: Results of truss under single load 

 

Similarly, Figure 33 shows that the optimal weight for the 9M3L topology is 1.6385 kips for the 

ETABS optimization method and 1.2865 kips for the GA optimization method, indicating the superiority 

of the GA approach for this specific topology among the three cases considered. Moreover, in the case of 

trusses subjected to a single load, Error! Reference source not found. demonstrates that the GA consistently a

chieves better results compared to ETABS across all truss configurations. 

 

 
Figure 31 optimum wt. versus No. of elements for 

Truss under single load 

 
Figure 32 optimum wt. versus No. of elements for 

Truss under three loads 
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Figure 33 Result of truss under three loads 
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