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ABSTRACT 
This study's objective is to overcome limitations in current design recommendations by exploring the application of machine learning 

to predict the flexural behavior of fiber-reinforced polymer (FRP)-strengthened reinforced concrete beams. Although FRP composites 

have completely changed structural strengthening, it might be challenging to predict bending moments with precision. This work fills 

the theoretical and experimental findings gaps by utilizing Artificial Neural Network (ANN) models in conjunction with computational 

techniques and statistical analysis. It includes gathering data, conducting a thorough literature review, and developing three models: 

Artificial neural network (ANN), Non-linear Regression (NLR), and Linear Regression (LR). Despite other models, the ANN model 

stands out for its superior performance and accurate predictions. Understanding material characteristics, FRP properties, and beam 

dimensions is critical in predicting flexural strength. The most significant parameter studied in this research is the overall depth of the 

beam (h), followed by the variation in bottom flexural reinforcement (ρs). Additionally, the FRP ratio (ρf) and beam width (b), which 

are both regarded as significant attributes, influence the flexural capacity of FRP-strengthened beams. The ultimate moment (Mu) may 

be predicted by the ANN model with an error range of -20% to +15%, indicating a significant advancement in strengthening approach 

optimization. This development could reduce the requirement for expensive experimental testing during construction, thereby enhancing 

the predictive capacity of structural engineering procedures. Furthermore, the design of flexurally strengthened RC beams with FRP 

may be made possible by depending on this model, specifically the ANN, without the need for experimental effort. 
https://creativecommons.org/licenses/by-nc/4.0/ 
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1. Introduction 

Composites made of FRP have completely altered the method by 
which concrete constructions are strengthened. They provide 
improved load-bearing capacities, fulfill inaccurate code 
requirements, and repair environmental damage[1-4]. Over the past 
few decades, many experimental and theoretical studies have 
examined the behavior of reinforced concrete (RC) structures 
strengthened by various techniques, such as externally bonded 
fiber-reinforced polymer (EB-FRP) and near-surface mounted 
FRP (NSM-FRP)[5-12]. 

The ultimate bending moments in strengthened beams are often 
predicted in the context of design standards using common 
assumptions. Even though those predictions are well supported 
by research, they frequently fail to accurately describe the real 
performance of strengthened beams. That is because they mostly 
rely on ideas about the failure of tension reinforcement or the 
collapse of the concrete compression zone, ignoring the wide 

range of factors that can affect real performance[13]. 

In structural engineering, machine learning (ML) deals with tasks 
like damage detection and strength predictions. It includes 
supervised, unsupervised, and reinforcement learning. Neural 
networks, decision trees, support vector machines, and other 
algorithms are commonly utilized. In engineering design, the 
utilization of surrogate models, alternatively termed metamodels, 
serves to mitigate computational complexity by simplifying 
intricate machine-learning models. Because of its adaptability, 
machine learning (ML) provides engineers with useful insights 
that improve the efficiency and accuracy of operations related to 
the design, analysis, and maintenance of civil infrastructure. By 
facilitating well-informed decision-making and optimization, 
these methods help to develop resilient and sustainable 
infrastructure systems[14]. 

Artificial neural networks (ANN) encompass various types, 
including the commonly known neural networks (NN). Typically, 
a neural network (NN) has input, hidden, and output layers. 
Neurons use weights to determine which information to send to 
the next layer. The back propagation (BP) algorithm uses gradient 
descent to modify neuron weights during training. In an artificial 
neural network (ANN), neurons cycle, and information spreads 
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throughout the network. The BP algorithm improves the 
network's information processing capacity by optimizing neuron 
weights during training[15, 16]. 

Since FRP laminate is lightweight, non-corrosive, and effective 
at strengthening and repairing seismic structures, it offers a viable 
alternative for use as a strengthening component in concrete 
structures. Investigations have, however, revealed certain 
difficulties, such as the composites' tendency to debond from 
concrete surfaces before they achieve the laminates' rupture 
strength. As a solution to these issues, research into ANN models 
for structural behavior prediction has garnered interest[17]. The 
goal of this study is to predict the ultimate load capacity of 
reinforced concrete beams strengthened with FRP using multi-
layer perceptron neural networks and backpropagation 
algorithms. A comprehensive parametric study is performed to 
understand and improve the performance of concrete beams 
strengthened using FRP. 

Based on the American Concrete Institute guideline (ACI 
440.2R-08)[18] recommendations, Xue et al.[19] used theoretical 
frameworks to demonstrate that there was a significant gap 
between experimental data and theoretical predictions for 
strengthening RC beams using prestressed carbon fiber-
reinforced polymer plates, this illustrated the drawbacks of these 
methodologies. Mahmoud et al.[20] revealed flaws in the method 
of predicting ultimate bending moments for RC beams utilizing 
Near Surface Mounted Fiber Reinforced Polymer (NSM-FRP), 
which further illustrated the necessity for more precise estimation 
methods. This study suggests a novel approach to fill this gap by 
estimating the bending moments of reinforced beams using ANN 
models. In civil engineering applications, ANNs are frequently 
employed as a tool for a variety of operations, including structural 
assessments, and shear strength prediction in FRP-strengthened 
RC elements[13, 17, 21, 22]. The implementation of AI-based 
predictive maintenance systems for civil infrastructure is 
a possible area of future research. Such advancements can 
involve developing algorithms to evaluate monitoring data and 
predict probable structural degradation or equipment failures, 
enabling proactive maintenance treatments and better asset 
management techniques. 

In 1997, data provided by Arduini M. and Nannin presented 
samples of RC beams strengthened with sheets of carbon fiber-
reinforced polymer (CFRP). CFRP was utilized to strengthen the 
surface of the concrete. Several variables were examined, 
including load locations, surface preparation, and CFRP 
configurations. Some variables had a negligible influence, but the 
strengthening effect was substantial[23].  

The behaviors of bonded FRP-strengthened RC beams were 
investigated in 2001 by Rahim H. and Hutchinson A., flexural 
tests on 2.3m concrete beams with externally bonded 
reinforcements, as well as variations in the kind and amount of 
internal reinforcement, were conducted as part of the 
experimentation. For comparison, bonded steel plates were used 
in certain beams. A 2D non-linear finite-element model for 
concrete with a "damaged" material model was integrated into the 
theoretical investigation. The experimental results generally 
demonstrated good correlations with models of non-linear finite 
elements[24].  

The goal of a 2001 study by Brena SF et al. was to employ CFRP 
composites to raise the flexural capacity of bridges. During the 
initial phase, four CFRP systems were used to test twenty-two 
concrete beams, and designs to avoid early debonding were 
investigated. Following fatigue tests on eight beams, it was found 
that there was no interface degradation under one million cycles; 
nevertheless, the analytical model was unable to simulate 
material strains resulting from CFRP debonding[25]. 

The load capacity of RC beams with the same deformational 
resemblance to reference beams was enhanced in 2005 by Barros 
JAO and Fortes AS applying CFRP laminate strips to conduct the 
near-surface mounted (NSM) technique. implementing this 
technique, the CFRP acquired 62%–91% of its ultimate strain, 
significantly increasing both the load at the serviceability limit 
and stiffness after cracking. In strengthened RC beams, load-
carrying capability, and deflection were precisely predicted by 
numerical modeling[26].  

The use of CFRP rods in NSM-strengthening concrete structural 
components was investigated by Al-Mahmoud et al. in 2009. 
Using carbon-epoxy pultruded FRP rods with a diameter of 6 and 
12 mm. Their study examined the overall performance of NSM-
strengthened RC beams under flexure. Various vibrated concrete 
compositions (regular VC30 and high-strength VC60) and filler 
materials (mortar and resin) were tested up to the failure load. 
Test results compared to current analytical models confirmed that 
adding NSM reinforcement to concrete structural elements 
provided outstanding outcomes[20].  

Twenty concrete beams strengthened with NSM-FRP bars were 
investigated by Soliman S. and El-Salakawy in 2010, evaluating 
the diameter, bonding, steel ratio, kind of bar, and size of the 
groove. The results show how well NSM-FRP increases the 
beams' flexural strength. Furthermore, the outcomes of 
experiments are successfully mirrored by 3D finite element 
analysis, which demonstrates strong agreement in the areas of 
failure modes, ultimate capacity, load-deflection, and strain[27].  

To increase the flexural strength of concrete, Nakul (2012) 
studied the application of NSM-CFRP or CFRP strips.  Due to its 
advantages over external CFRP laminates in terms of strength, 
stiffness, bonding, adjacent member anchoring, and simplicity of 
installation, NSM-CFRP has attracted attention from structural 
engineers worldwide. Under static or impact loads, this 
investigation assessed NSM-CFRP retrofits in RC beams and 
slabs. It found notable increases in strength and stiffness, 
especially in impact resistance, with possible applications in a 
variety of structures[28].  

The four-point bending RC beams reinforced with NSM FRP bars 
were examined in the 2014 study by Sharaky et al. Material type, 
epoxy characteristics, bar size, and the quantity of NSM bars 
were among the variables examined. The results of the analysis 
demonstrated significant load improvements for CFRP and 
GFRP (155.8% and 129.8% in yielding loads and 166.3% and 
159.4% in ultimate loads). Variations in epoxy and bar had a 
negligible impact on load capacity; failures in epoxy or concrete 
cover delamination occurred[29].  

In Al-Obaidi's 2015 project, various retrofitting techniques for 
structural modifications, such as the use of steel plates and FRP 
jackets, were examined to improve shear and flexural 



 
 

 

  

 
    

 
200 

6 

 Askander Passer 6 (Issue 1) (2024) 198-213 

capabilities. Although FRP has advantages, there were corrosion 
issues. The study concentrated on NSM-CFRP rods, analyzing 
their bond properties using pullout testing and evaluating how 
well they worked as reinforcing elements for concrete beams[30].  

A study in 2016 by Seo et al. examined how partially debonded 
NSM-FRP strips of various lengths potentially increase the RC 
beams' bending strength. To increase the bonded surface without 
changing the FRP area, they concentrated on the impact of the de-
bonded region's placement within the FRP strip. By applying the 
current equations to evaluate the flexural strength, the study 
discovered that the deformation capacity increased when a de-
bonded zone was positioned in the center, allowing for a uniform 
distribution of FRP strain. Triple lines of NSM FRP strips were 
used, which resulted in stronger bonds due to higher anchorage 
strength[31]. 

In their 2017 work, Daghash SM and Ozbulut OE examined RC 
beams strengthened with NSM basalt fiber-reinforced polymer 
bars. For a bond failure model to be relevant, independent of the 
CFRP reinforcement's geometry, they evaluated the effects of 
NSM BFRP bars on restoring capacity and improving ductility 
while at the expense of smaller deflection capacity by testing five 
2100mm beams with different reinforcement ratios. They 
conducted this by using strain gauges, digital image correlation, 
and four-point bending tests[32].  

An equivalent section model proposed by Woo et al. (2017) 
assumed that the CFRP reinforcement and filler would behave in 
a unified manner. The bond failure model that was generated was 
evaluated analytically and verified by experiments conducted on 
NSM CFRP-reinforced beams with varying cross-sections. The 
exact failure mechanism prediction and accurate correlation with 
experimental data were demonstrated to be achievable, 
irrespective of the geometry of the CFRP reinforcement[33]. 

To evaluate their effect on beam response, Trung et al. tested the 
influence of carbon fiber strand (CFS) strengthening on RC 
beams in 2018. They examined displacement characteristics, 
response force, and crack patterns, providing a full account of the 
experimental techniques. Their numerical analysis produced 
simulated results that were in agreement with experiments by 
using reliable constitutive models and beam contact conditions. 
CFS strengthening enhanced the flexural capacity of RC beams 
under impact and static loads[34].  

In 2020, Moawad examined the long-term and residual flexural 
strength of CFRP-stripped NSM-reinforced RC beams under 
continuous stress. Two batches of concrete with different 
compressive strengths were used in the study for constructing 
twenty-eight RC beams that were split up into Series A and B. 
A1 and A2 groups comprised series A, and B was further 
classified into B1, B2, and B3. Beams in the first group of each 
series were tested after 55 days to assess the short-term flexural 
behavior of strengthened and un-strengthened beams; the 
succeeding groups underwent various long-term tests[35]. 

Using CFRP and engineered cementitious composite (ECC), Liu 
et al. in 2023 focused on enhancing the RC beam's flexural 
strength. The experimental study verified that the use of CFRP 
alone caused early delamination; however, this can be avoided by 
combining CFRP with ECC. The composite approach led to 
considerable improvements in energy absorption, stiffness, 

ductility, and load capacities (up to 23–31% for cracking load). 
When the projected and tested flexural bearing capacities were 
compared, the prediction model showed excellent accuracy, with 
error variations within 5%[36]. 

The ANN is a computational method for addressing problems that 
may produce definitive findings with little time and expense. It 
mimics the human brain's capacity to learn from the past and 
make predictions. In the discipline of structural engineering, 
ANN has gained popularity recently, particularly in identifying 
relationships in data. 

This study looks at the theory of flexure in reinforced concrete 
beams reinforced with FRP and then analyses the guidelines that 
are already in place for this kind of research. Next, by creating 
prediction models and using data from relevant studies in the field 
of FRP-strengthened RC beams, the correspondence between 
input and output data is developed to ascertain the ultimate 
flexural strength. 

Additionally, the soft computing techniques utilized for 
predicting Mu for enhanced RC beam properties have limits. 
Hoang et al.[13] evaluated the Mu of strengthened RC beams using 
an ANN model. They combined 131 investigation results with six 
input parameters identified in the literature to produce the ANN 
models. They concluded that applying an ANN model to predict 
the Mu of a strengthened RC beam using FRP fiber is an effective 
strategy[13]. 

This comprehensive investigation integrates computational 
approaches, artificial neural networks, and machine learning 
techniques to solve significant challenges in flexural strength 
prediction and strengthening technique optimization for 
improved structural performance in FRP-strengthened concrete 
beams. The study offers a substantial contribution to the 
development of structural engineering techniques by trying to fill 
the gap between theoretical predictions and experimental results. 
Due to a lack of research on the creation of different models, this 
study was conducted to estimate the flexural strength of a 
strengthened RC beam using three different models and six input 
factors.  

2. Research Significance 

This research is important because it takes a novel approach to 

overcoming shortcomings with the design guidelines that are 

already in place for RC beams strengthened using FRP. This 

work fills theoretical and experimental gaps in the prediction of 

flexural behavior by utilizing machine learning, namely 

ANN models, in conjunction with computational methods and 

statistical analysis. A significant achievement in enhancing 

strengthening is provided by the ANN model's exceptional 

performance and accuracy. This discovery could significantly 

reduce the need for expensive experimental testing. In the end, 

this development opens the door for more accurate and efficient 

structural engineering processes, which will enable the design of 

flexural strengthened RC beams using FRP without requiring 

much experimental work. 

3. Flexural Strength of RC of FRP-strengthened RC 

beams 



 
 

 

  

 
    

 
201 

6 

 Askander Passer 6 (Issue 1) (2024) 198-213 

A rectangular section in flexure at the state of ultimate limit is 

demonstrated in Figure 1 with internal strain and stress 

distribution. 

 

Figure 1: strain and stress distribution at the ultimate limit state for a rectangular section in flexure[37]. 

Equation one determines the section's nominal flexural strength 

with FRP external reinforcement. An extra reduction factor, 𝜑𝑓, 

further diminishes the flexural-strength contribution of the FRP 

reinforcement. The recommended value 𝜑𝑓 is 0.85[37, 38]. 

𝑀𝑛 = 𝐴𝑠𝑓𝑠 (𝑑 −
𝛽1𝑐

2
) + 𝜑𝑓𝐴𝑓𝑓𝑓𝑒 (𝑑𝑓 −

𝛽1𝑐

2
)                            (1) 

Based on the design model in the ACI 440.2R-17[37],  

𝑓𝑠 = 𝐸𝑠𝜀𝑠  ≤  𝑓𝑦                                                                                  (2) 

Equations 3 and 4 can be used to compute the strain in the 

concrete and the reinforcing steel using identical triangles. 𝜀𝑠 =

(𝜀𝑓𝑒 + 𝜀𝑏𝑖) (
𝑑−𝑐

𝑑𝑓−𝑐
)                                                                                    (3) 

𝜀𝑐 = (𝜀𝑓𝑒 + 𝜀𝑏𝑖) (
𝑐

𝑑𝑓−𝑐
)                                                                               (4) 

Utilizing ACI 318-05, concrete stress block factors can be 

computed[39]. The parabolic stress-strain relationship for concrete 

can also be used to approximate stress block factors, as seen 

below: 

𝛽1 =
4𝜀𝑐
′−𝜀𝑐

6𝜀𝑐
′−2𝜀𝑐

                                                                                                   (5) 

𝛼1 =
3𝜀𝑐
′𝜀𝑐−𝜀𝑐

2

3𝛽1𝜀𝑐
′2

                                                                                                 (6) 

𝜀𝑐
′ =

1.7𝑓𝑐
′

𝐸𝑐
                                                                                                       (7) 

𝑐 =
𝐴𝑠𝑓𝑠+𝐴𝑓𝑓𝑓𝑒

𝛼1𝑓𝑐
′𝛽1𝑏

                                                                                               (8) 

𝑓𝑓𝑒 = 𝐸𝑓𝜀𝑓𝑒                                                                                                   (9) 

𝜀𝑓𝑒 = 0.003 (
𝑑𝑓−𝑐

𝑐
) − 𝜀𝑏𝑖 ≤ 𝜀𝑓𝑑                                                          (10) 

𝜀𝑏𝑖 =
𝑀𝐷𝐿(𝑓𝑓−𝑘𝑑)

𝐼𝑐𝑟𝐸𝑐
                                                                                           (12) 

𝑘 = √(𝜌𝑠
𝐸𝑠

𝐸𝑐
+ 𝜌𝑓

𝐸𝑓

𝐸𝑐
)
2

+ (𝜌𝑠
𝐸𝑠

𝐸𝑐
+ 𝜌𝑓

𝐸𝑓

𝐸𝑐
(
𝑑𝑓

𝑑
)) −  (𝜌𝑠

𝐸𝑠

𝐸𝑐
+

𝜌𝑓
𝐸𝑓

𝐸𝑐
)                                                                                        (13) 

𝜀𝑓𝑑 = 0.41√
𝑓𝑐
′

𝑛𝐸𝑓𝑡𝑓
≤ 0.9𝜀𝑓𝑢                                                                    (14) 

𝜌𝑓 =
𝑛𝑏𝑓𝑡𝑓

𝑏ℎ
                                                                                                       (15) 

All the variables used in the equations stated above are included 

in Table 1. The features of the FRP sheets, such as the modulus 

of elasticity, which can vary depending on the kind of GFRP or 

CFRP, sheet thickness, effective width, and number of layers, 

have significant effects on flexural strength.  

Table 1: Flexural strength Effective parameters for FRP-strengthened 

RC beams. 

Parameters 

Width of reinforced concrete beam  b (mm) 

Height of reinforced concrete beam h (mm) 

Compressive strength of concrete f’c (MPa) 

Flexural reinforcement ratio  ρs (%) 

FRP ratio  ρf (%) 

The FRP sheet's modulus of elasticity Efrp (MPa) 

The selection criteria and rationale for these input parameters 

originate from their direct impact on the flexural strength of FRP-

strengthened RC beams, as well as their extensive use in 

structural analysis and design: 

I. The width (b) and height (h) of an RC beam: The structural 

behavior and capacity of an RC beam are directly influenced 

by its dimensions. The basic geometric parameters of width and 
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height have an impact on how stresses and strains are 

distributed throughout the beam. 

II. Concrete compressive strength (f'c): The RC beam's ability to 

withstand compression forces is determined by the concrete's 

compressive strength, which is an important parameter. In 

general, higher compressive strength equals higher beam 

capacity. 

III. Flexural reinforcement ratio (ρs): The quantity of flexural 

reinforcement influences the beam's resistance to shear and 

bending forces.  A larger reinforcement ratio increases the 

beam's ability to sustain flexural loads. 

IV. FRP ratio (ρf): The beam's flexural behavior and capacity are 

influenced by the ratio of FRP reinforcement used in it. 

Usually, Increasing the FRP ratio results in a stronger, more 

rigid beam. 

V. Elastic modulus of FRP (Efrp): The stiffness and deformation 

properties of the beam are influenced by the modulus of 

elasticity of the FRP material that is used for reinforcement. A 

beam with a higher modulus of elasticity is stiffer and has less 

deflection when under load. 

These parameters are crucial for creating accurate predictive 

models since they together capture the main elements influencing 

the behavior of the beams. 

4. Methodology and Models 

4.1 Data Collection 

For this study, 136 datasets from various literature sources were 

gathered and organized into an Excel sheet. After that, the data 

were divided into three groups, statistical examination was done, 

and random sorting was performed. Models were created using 

the training dataset, which was the largest piece of data and made 

up 70% of the total data. The remaining two groups were used to 

test and validate the models; they accounted for 15% of the 

datasets each[13, 40, 41]. The variables database for each sample are 

summarized in Table 2. 

Earlier research evaluating the impact of FRP sheets upon 

flexural strength was found through the authors' searches. The 

input dataset is shown in Table 2 and includes i. the RC beam's 

width (b); ii. its height (h); iii. the concrete's compressive strength 

(f’c); iv. the flexural reinforcement ratio (ρs); v. the FRP ratio (ρf); 

vi. its modulus of elasticity (Efrp). 

Using the dataset that was provided, which comprised the six 

independent components previously mentioned, 

the enhanced RC beam's flexural strength was estimated. The aim 

is to minimize the number of laboratory test batches required to 

quickly optimize the number of components for a specific Mu by 

utilizing all of the mentioned input variables. The methodology 

for this experiment is explained in Figure 2. 

Table 2: Statistical specifications of input data. 

no. Authors 
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S
tr
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en
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d
 M

a
te
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Label b (mm) h (mm) 
f'c 

(Mpa) 

ρs 

(%) 

ρf 

(%) 

Efrp 

(Gpa) 

1 

A
rd

u
in

i 
an

d
 N

an
n

i 
[2

3
] 

E
x

te
rn

al
ly

 b
o

n
d

ed
 s

y
st

em
 

CFRP 

SM2 320 160 36 0.642 0.332 235 

2 SM3 320 160 36 0.642 0.332 235 

3 SM4 320 160 36 0.642 0.332 235 

4 SM5 320 160 36 0.642 0.332 235 

5 SM6 320 160 36 0.642 0.332 235 

6 ST2 320 160 36 0.642 0.332 235 

7 ST3 320 160 36 0.642 0.332 235 

8 ST4 320 160 36 0.642 0.332 235 

9 MM2 160 320 36 0.931 0.135 235 

10 MM3 160 320 36 0.931 0.135 235 

11 MM4 160 320 36 0.931 0.135 235 

12 MT2 160 320 36 0.931 0.135 235 

13 MT3 160 320 36 0.931 0.135 235 

14 MT4 160 320 36 0.931 0.135 235 

15 MT5 160 320 36 0.931 0.135 235 

16 

R
ah

im
 H

 a
n

d
 

H
u

tc
h

in
so

n
 A

. 
[2

4
] 

E
x

te
rn
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o

n
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em
 

 

A4 200 150 50 0.433 0.517 127 

17 A5 200 150 50 0.433 0.517 127 

18 A6 200 150 50 0.433 0.776 127 

19 A7 200 150 50 0.433 0.776 127 

20 A8 200 150 50 0.433 0.517 127 

21 A9 200 150 50 0.433 0.517 127 

22 A10 200 150 50 0.433 0.517 127 

23 A11 200 150 50 0.433 0.517 127 
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24 B3 200 150 50 0.683 0.261 127 

25 B4 200 150 50 0.683 0.261 127 

26 B5 200 150 50 0.683 0.783 127 

27 B6 200 150 50 0.683 0.783 127 

28  B7 200 150 50 0.683 1.174 36 

29 B8 200 150 50 0.683 1.174 36 

30 

 

C3 200 150 50 0.903 0.268 127 

31 C4 200 150 50 0.903 0.268 127 

32 C5 200 150 50 0.903 0.804 127 

33 C6 200 150 50 0.903 0.804 127 

34  C7 200 150 50 0.903 1.205 36 

35 C8 200 150 50 0.903 1.205 36 

36 

B
re

n
a 

S
F

 e
t 

al
. 

[2
5

] 

E
x

te
rn

al
ly

 b
o

n
d

ed
 s

y
st

em
 

CFRP 

A1 203 356 35.1 0.62 0.100 227.5 

37 A2 203 356 35.1 0.62 0.100 227.5 

38 A3 203 356 35.1 0.62 0.100 227.5 

39 A4 203 356 35.1 0.62 0.200 227.5 

40 B1 203 356 37.2 0.62 0.150 230.3 

41 C1 203 406 35.1 0.62 0.082 62.1 

42 C2 203 406 35.1 0.62 0.082 62.1 

43 D1 203 406 37.2 0.62 0.094 155.1 

44 D2 203 406 37.2 0.62 0.094 155.1 

45 

B
ar

ro
s 

JA
O

 

an
d

 F
o

rt
es

 

A
S

 [
2

6
] 

NSM CFRP 

V1R1 100 170 45.3 0.368 1.130 158.8 

46 V2R2 100 177 48.9 0.551 0.260 158.8 

47 V3R2 100 175 42.8 0.699 0.261 158.8 

48 V4R3 100 180 46.4 0.986 0.392 158.8 

49 

A
l-

M
ah

m
o

u
d

 e
t 

al
. 

[2
0

] 

NSM CFRP 

S-C 6 (VC30) 150 280 37.5 0.745 0.158 145.9 

50 S-C 6 (270-R) 150 280 36.5 0.745 0.158 145.9 

51 S-C6 (210-R) 150 280 36.7 0.745 0.158 145.9 

52 S-C 12 (VC30) 150 280 35.1 0.745 0.317 145.9 

53 S-C 12 (VC60) 150 280 67.2 0.745 0.317 145.9 

54 S-C6 (VC60) 150 280 66.5 0.745 0.158 145.9 

55 S-C6 (270-M) 150 280 38.1 0.745 0.158 145.9 

56 

S
o

li
m

an
 S

 a
n

d
 E

l-
S

al
ak

aw
y

  
[2

7
] 

NSM 

 A1 200 300 35 1.553 0.137 124 

57  A2 200 300 35 1.553 0.137 124 

58  A3 200 300 35 1.553 0.137 124 

59  A4 200 300 35 1.553 0.137 124 

60  B1 200 300 35 0.777 0.137 124 

61  B2 200 300 35 0.777 0.137 124 

62  C1 200 300 35 0.388 0.137 124 

63  C2 200 300 35 0.388 0.137 124 

64  C3 200 300 35 0.388 0.137 124 

65  C4 200 300 35 0.388 0.137 124 

66  C5 200 300 35 0.388 0.137 124 

67  C6 200 300 35 0.388 0.137 124 

68  C7 200 300 35 0.388 0.137 124 

69  C8 200 300 35 0.388 0.246 134 

70  C9 200 300 35 0.388 0.246 134 

71  C10 200 300 35 0.388 0.246 45 

72  C11 200 300 35 0.388 0.246 45 

73 

N
ak

u
l 

[2
8
] 

NSM CFRP 

1 152 229 34.5 0.701 0.337 137.9 

74 3 152 229 34.5 0.701 0.225 137.9 

75 4 152 229 34.5 0.701 0.450 137.9 

76 5 152 229 34.5 0.701 0.225 137.9 

77 6 152 229 34.5 0.701 0.337 137.9 

78 7 152 229 34.5 0.701 0.450 137.9 

79 8 152 229 34.5 1.401 0.225 137.9 

80 9 152 229 34.5 1.401 0.337 137.9 
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81 10 152 229 34.5 1.401 0.450 137.9 

82 12 152 229 34.5 1.401 0.225 137.9 

83 13 152 229 34.5 1.401 0.337 137.9 

84 14 152 229 34.5 1.401 0.450 137.9 

85 17 152 229 34.5 2.102 0.562 137.9 

86 19 152 229 34.5 2.102 0.225 137.9 

87 21 152 229 34.5 2.102 0.45 137.9 

88 

S
h

ar
ak

y
 e

t 
al

. 
[2

9
] 

NSM 

CFRP LB1C1 160 280 32.4 0.579 0.129 170 

89 GFRP LB1G1 160 280 32.4 0.579 0.129 64 

90 CFRP LB2C1 160 280 32.4 0.579 0.257 170 

91 GFRP LB2G1 160 280 32.4 0.579 0.257 64 

92 CFRP LA2C1 160 280 32.4 0.579 0.257 170 

93 GFRP LA2G1 160 280 32.4 0.579 0.257 64 

94 GFRP LB1G2 160 280 32.4 0.579 0.290 64 

95 

A
l-

O
b

ai
d

i 
[3

0
] 

NSM CFRP 

AR2 165 254 29 0.732 0.183 124.1 

96 AR3 165 254 30.1 0.732 0.412 124.1 

97 AR4 165 254 27.6 0.732 0.732 124.1 

98 AR4-S 165 254 31.7 0.732 0.366 124.1 

99 BR2 165 254 30 0.412 0.183 124.1 

100 BR3 165 254 32.2 0.412 0.412 124.1 

101 BR4 165 254 30.3 0.412 0.732 124.1 

102 

S
eo

 e
t 

al
. 

[3
1
] 

 

CFRP 

BP1600 200 400 21 0.43 0.082 160 

103  CP1600-1 200 400 21 0.43 0.079 160 

104  CP1600-3 200 400 21 0.43 0.079 160 

105  CP500-1 200 400 21 0.43 0.079 160 

106  CP500-3 200 400 21 0.43 0.079 160 

107  CP400-1 200 400 21 0.43 0.079 160 

108  CP400-3 200 400 21 0.43 0.079 160 

109  CP300-1 200 400 21 0.43 0.079 160 

110  CP300-3 200 400 21 0.43 0.079 160 

111 

D
ag

h
as

h
 

S
M

 a
n

d
 

O
zb

u
lu

t 

O
E

 [
3

2
] 

NSM BFRP 

S3B1 150 300 38 0.873 0.182 44.3 

112 S3B2 150 300 38 0.873 0.365 44.3 

113 S2B1 150 300 38 0.582 0.182 44.3 

114 S2B2 150 300 38 0.582 0.365 44.3 

115 

W
o

o
 e

t 
al

. 
[3

3
] 

NSM CFRP 

R-PL-15 200 300 31.3 0.412 0.040 167.0 

116 R-PL-25 200 300 31.3 0.412 0.067 167.0 

117 R-RD-9 200 300 31.3 0.412 0.122 121.4 

118 R-PL-25*2-S 200 300 31.3 0.412 0.135 167.0 

119 R-PL-25*2-2S 200 300 31.3 0.412 0.135 167.0 

120 R-PD-9*2-S 200 300 31.3 0.412 0.245 121.4 

121 R-PD-9*2-2S 200 300 31.3 0.412 0.246 121.4 

122 

T
ru

n
g

 e
t 

al
. 

[3
4

] 

NSM CFRP 

SR48-1 200 300 35.8 1.146 0.088 237 

123 SR48-2 200 300 35.8 1.146 0.088 237 

124 SR72-1 200 300 35.8 1.146 0.132 237 

125 SR72-2 200 300 35.8 1.146 0.132 237 

126 

M
o

aw
ad

 [
3

5
] 

NSM CFRP 

AS1sh 140 180 36.0 0.769 0.137 160.9 

127 AD1sh 140 180 36.0 0.769 0.274 158.3 

128 AS2sh 140 180 36.0 1.967 0.137 160.9 

129 AS3sh 140 180 36.8 0.769 0.137 160.9 

130 BT3sh 140 180 36.8 0.769 0.411 158.3 

131 BS3sh 140 180 36.8 0.769 0.137 160.9 

132 

L
iu

, 
D

.,
 e

t 
al

. 

[3
6

] 

E
x

te
rn

al
ly

 

b
o

n
d

ed
 

sy
st

em
 

CFRP 

CP-1 150 250 45.2 2.04 0.53 160 

133 CP-2 150 250 45.2 2.04 0.53 160 

134 E30-CP-T 150 250 45.2 2.04 0.53 160 

135 E30-CP-M 150 250 45.2 2.04 0.5 160 

136 E30-CP-B 150 250 45.2 2.04 0.47 160 
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Figure 2: The flowchart diagram process followed in this study. 

4.2 Modeling 

It is impossible to draw a direct relation between experimental 

Mu, exp. and predicted Mu, pred. According to the results of the data 

analysis in the following section, six input variables are employed 

to measure the impact of each parameter on Mu. Three distinct 

soft computing approaches are offered, as shown below. 

4.2.1 Linear Relationship Model  

As said earlier, the objective of this study is to create a model that 

assesses the impact of the greatest possible number of parameters 

on the Mu of a strengthened RC beam. Equation (16) illustrates 

the use of linear regression as a general technique for evaluating 

Mu: 

𝑀𝑢 = 𝛼1 + 𝛼2(𝜌𝑓)     …….                                                        . (16) 

Where 𝛼1 and 𝛼2 represent the model's inputs for ultimate 

flexural strength (Mu) and FRP-strengthened ratio (ρf), 

respectively. Despite their impact on Mu, beam width and other 

elements and variables adjusted with Mu, which are not 

considered in the prior model. Using the EXCEL program and a 

solver, the values of each parameter in the current model were 

determined using the least squares approach and the sum of error 

squares. To provide more reliable scientific data Equation (17) is 

proposed, which incorporates all potential influences on Mu[42]. 

𝑀𝑢 = 𝛼1 + 𝛼2(𝑏) + 𝛼3(ℎ) + 𝛼4(𝑓𝑐
′) + 𝛼5(𝜌𝑠) + 𝛼6(𝜌𝑓) +

𝛼7(𝐸𝐹𝑅𝑃)                                                                                       (17) 

Here, b stands for RC beam's width (mm), h for its height (mm), 

(f’c) is the compressive strength of the concrete (MPa), (ρs) is the 

internal steel reinforcement ratio (%), (ρf) is the external FRP-

strengthened ratio (%), and Efrp stands for the elasticity modulus 

of the FRP sheet (MPa). 

The model's parameters are 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5, 𝛼6, 𝑎𝑛𝑑 𝛼7. 

Equation (17) can be used to expand Equation (16) since all 

factors can be altered linearly. Mu may be influenced by a variety 

of elements that engage in conversation with one another. To 

exactly predict the flexural strength, regular updates are required 

for the model. 

4.2.2 Non-linear Model  

Equation (18) can be used to create an NLR model [42]. Equation 

(1) can be used to predict the Mu by stating the relationship 

between the various components in Equations (16) and (17). 

𝑀𝑢 = 𝛼1 × (𝑏)
𝛼2 × (ℎ)𝛼3 × (𝑓𝑐

′)𝛼4 × (𝜌𝑠)
𝛼5 × (𝜌𝑓)

𝛼6

× (𝐸𝐹𝑅𝑃)
𝛼7

+ 𝛼8 × (𝑏)
𝛼9 × (ℎ)𝛼10 × (𝑓𝑐

′)𝛼11 × (𝜌𝑠)
𝛼12

× (𝜌𝑓)
𝛼13
× (𝐸𝐹𝑅𝑃)

𝛼14                                 (18) 

The NLR model's parameters are the same as those that were 

previously established. Additionally, in a similar way to the LR 

model, the values of each parameter were found using the least 

squares method and the sum of error squares using the EXCEL 

application and a solver. 

4.2.3 ANN Model 

The opposite of feed-forward neural networks is an ANN[42]. 

These networks consist of three different layers: input, output, 

and hidden layers. The hidden layer (or layers) sits between the 

input and output levels, letting data pass from one to the other. 

The input layer is responsible for receiving input data, while the 

output layer makes predictions and categorizes data. Trial cycles 

demonstrate that the number of hidden layers is variable and may 

be changed to improve the functionality of the model. The study's 

authors examined several variables, such as the number of hidden 

layers, neurons, momentum, learning rate, and iterations, to 

determine the optimal system architecture. For the current 

investigation, it was found that the maximum efficiency was 

achieved when the ANN comprised one hidden layer, eight 

neurons (as shown in Figure 3), 2000 iterations, a learning rate of 

0.2, and a momentum of 0.1. These settings produced the highest 

R2 value and the lowest MAE and RMSE values. Equations (19)– 

(21)[42-45] provide the equations for the ANN model. Based on the 

model's R2, MAE, and RMSE performances, determine which 

hidden layer and neurons are optimal for an ANN model, as stated 

in Table 3. 
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Hyperparameter tuning plays a crucial role in our application of 

ANN to the simulation of the flexural strength of beams 

strengthened with FRP. We understand that ensuring the 

versatility and reliability of our generated models requires a clear 

description of our hyperparameter tuning technique. 

We carefully tuned the hyperparameters in our study to maximize 

the effectiveness of the ANN models. We used a methodical 

strategy that made use of the features provided by the Weka 

program, which provides a range of hyperparameter optimization 

methods. To be more precise, we used the Weka framework in 

conjunction with grid search and random search techniques to 

thoroughly investigate the hyperparameter space.  

We established ranges for important hyperparameters, including 

learning rates, batch sizes, and the number of hidden layers and 

units throughout the hyperparameter tuning procedure. The 

performance of the ANN models was then methodically assessed 

across these hyperparameter settings using evaluates like R-

squared or mean squared error (MSE).  

We obtained robust estimates of model performance over a range 

of hyperparameter settings by splitting the dataset into many 

subsets and iteratively training and testing the models on different 

subsets.  

Clarity and reproducibility were our primary concerns during the 

hyperparameter tuning process, and we kept careful records of 

every action we took along with the reasoning behind it. Through 

this painstaking process, readers can learn more about the validity 

and applicability of the ANN models we created for predicting 

the flexural strength of FRP-strengthened beams.  

From linear node 0: 

𝑇𝑢 = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + (
𝑁𝑜𝑑𝑒 1

1 + 𝑒−𝐵1
) + (

𝑁𝑜𝑑𝑒 2

1 + 𝑒−𝐵2
) +⋯             (19) 

From sigmoid node 1: 

𝐵1 = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + ∑(𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 × 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒)                (20) 

From sigmoid node 2: 

𝐵2 = 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 + ∑(𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 × 𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒)                (21) 

Objective 

 

Figure 3: ANN model optimal network architecture. 

Table 3: ANN designs put to the test. 

 

Hidden 

layers 

number 

no. of  

Neurons 
R2 

MAE  

(MPa) 

RMSE 

 (MPa) 

 

Hidden 

layers 

number  

no of  

Neurons 
R2 

MAE  

(MPa) 

RMSE 

 (MPa) 

1 1 0.9344 6.40 8.10 5 1 0.9542 5.16 6.74 

2 1 0.9335 6.54 8.27 5 2 0.9730 4.43 5.60 

3 1 0.6991 18.53 24.28 5 3 0.9741 4.55 5.70 

2 1 0.9331 5.01 6.68 5 4 0.9697 5.13 6.47 

2 2 0.9509 5.15 6.95 6 2 0.9691 4.53 5.78 

2 3 0.9510 5.15 6.95 6 5 0.9695 4.51 5.82 

3 1 0.9514 5.12 6.83 6 7 0.9700 4.63 6.06 

3 2 0.9506 5.11 6.94 7 1 0.9738 3.74 5.01 

4 1 0.9659 4.82 6.07 7 2 0.9722 4.55 5.87 

4 2 0.9617 4.93 6.31 7 3 0.9720 4.47 5.64 

4 3 0.9630 4.99 6.39 8 1 0.9748 3.68 4.91 

4 4 0.9640 4.95 6.37 8 5 0.9740 4.28 5.47 

4 5 0.9647 4.92 6.34 9 5 0.9771 3.92 4.98 

4 6 0.9636 5.00 6.40 10 4 0.9776 3.88 4.85 

4 7 0.9641 5.12 6.52 20 5 0.9763 3.90 5.05 

4.3 Evaluation Standards for the Developed Models 

Several indicators were employed to assess the effectiveness of 

the suggested models, and the outcomes were computed using the 

equations provided. To ensure a comprehensive examination of a 

model's performance, it is crucial to apply multiple evaluation 

methodologies. A more thorough evaluation of the model's 
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capabilities and constraints is made possible by the use of a 

variety of metrics.  

𝑅2 =

(

 
∑ (𝑀𝑝 − 𝑝

′)(𝑀𝑎 − 𝑎
′)𝑁

𝑖=1

√[∑ (𝑀𝑝 − 𝑝
′)
2𝑁

𝑖=1 ] [∑ (𝑀𝑎 − 𝑎
′)2𝑁

𝑖=1 ]
)

 

2

                  (22) 

𝑅𝑀𝑆𝐸 = √
∑ (𝑀𝑎 −𝑀𝑝)

2𝑁
𝑖=1

𝑁
                                                      (23) 

𝑀𝐴𝐸 =
∑ |𝑀𝑃 −𝑀𝑎|
𝑁
𝑖=1

𝑁
                                                               (24) 

𝑆𝐼 =
𝑅𝑀𝑆𝐸

𝑝′
                                                                                     (25) 

𝑂𝐵𝐽 = (
𝑛𝑡𝑟
𝑛𝑎𝑙𝑙

×
𝑅𝑀𝑆𝐸𝑡𝑟 +𝑀𝐴𝐸𝑡𝑟

𝑅𝑡𝑟
2 + 1

)

+ (
𝑛𝑡𝑠𝑡
𝑛𝑎𝑙𝑙

×
𝑅𝑀𝑆𝐸𝑡𝑠𝑡 +𝑀𝐴𝐸𝑡𝑠𝑡

𝑅𝑡𝑠𝑡
2 + 1

)                 (26) 

In the previous iterations, Mp and Ma represent the expected and 

actual route pattern values, respectively. The means of the actual 

and anticipated values are denoted by a′ and p′, respectively. The 

terms training datasets, tested datasets, and the number of patterns 

(collected data) in the connected dataset are represented by the 

letters tr, tst, and N, respectively. A model performs (badly) when 

the SI parameter is greater than 0.3, (reasonably) when it is 

between 0.2 and 0.3, (well) when it is between 0.1 and 0.2, and 

(excellently) when it is less than 0.1[42, 46]. 

5. Results and Analysis 

5.1 The LR Model 

Figure 4(a, b) illustrates the relationship between measured and 

predicted Mu for training and testing. The least squares and sum 

of error squares methods were used to determine the values of 

each parameter in the current model. An example of the LR model 

equation with various weight parameters is given by equation 

(27). 

𝑀𝑢 = −51.99 + 0.08 (𝑏) + 0.26 (ℎ) − 0.08 (𝑓𝑐
′) + 17.33 (𝜌𝑠)

+ 11.38 (𝜌𝑓) + 0.02 (𝐸𝐹𝑅𝑃)                       (27) 

The beam overall height (h), steel reinforcement ratio (ρs), and 

FRP ratio (ρf) have the most influence on the Mu. This might be 

in line with the experimental results that have been published in 

the literature. The R2, RMSE, and MAE assessment parameters for 

this model are, respectively, 0.79, 10.04, and 7.70 MPa. 

Additionally, as demonstrated in Section 6, the training dataset's 

OBJ and SI values for the current model are 6.93 and 0.21, 

respectively. 

 
Figure 4: Comparison of the Ma that were tested and the Mp that the 

LR model predicted; (a): training datasets; (b): testing datasets. 

5.2 NLR Model 

As a training and testing dataset, Figure 5(a, b) illustrates the 

relation between predicted and actual Mu. The most significant 

factors that affect Mu are the overall depth of the beam (h), 

followed by the variation in the bottom flexural reinforcement 

(ρs). Equation (28) provides an NLR model formula with several 

variable parameters, states as follows: 

𝑀𝑢 = −0.15 × (𝑏)
0.12 × (ℎ)1.31 × (𝑓𝑐

′)−0.72 × (𝜌𝑠)
0.95

× (𝜌𝑓)
0.28

× (𝐸𝐹𝑅𝑃)
0.37

+ 0.12 × (𝑏)0.26 × (ℎ)1.34 × (𝑓𝑐
′)−0.64

× (𝜌𝑠)
0.80 × (𝜌𝑓)

0.21
× (𝐸𝐹𝑅𝑃)

0.22             (28) 

The R2, RMSE, and MAE values for this model are 0.88 MPa, 7.70 

MPa, and 5.95 MPa, respectively. For the training dataset, the 

OBJ and SI values are 5.08 and 0.16, respectively. 
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Figure 5: Comparison of the Ma that were tested and the Mp that the LR 

model predicted; (a) training datasets; (b) testing datasets. 

 
Figure 6: (a) A comparison between the tested Ma and the Mp predicted 

by the ANN model; (b) testing datasets. 

5.3 ANN Model 

Figure 6(a, b) compares the anticipated and actual Mu for training 

and testing datasets. The testing data has an error line of −20 

percent and +15%, which is better than the other proposed 

models, compared to the training datasets' ±15% error line. R2, 

RMSE, and MAE have respective assessment parameters of 0.95, 

4.91, and 3.69. For the training set, the current model's OBJ and 

SI values are 3.08 and 0.10, respectively. 

6. Comparison of Models  

The flexural strength of the enhanced RC beam predicted by each 

model was evaluated using statistical indicators found in Section 

5. The various ranges of prediction inaccuracy for every model, 

as illustrated in Figures 4, 5, 6, and 10, can be ascribed to 

variations in the modeling methodology and fundamental 

characteristics of each model. Compared to the NLR and LR 

models, which have error ranges of ±25% and ±30%, 

respectively, the ANN model has a smaller error range of ±15%. 

The reason for this difference can be attributed to the ANN 

model's outstanding ability to represent complex non-linear 

interactions, resulting in more accurate predictions. Furthermore, 

variables, including input characteristics, model complexity, and 

training data quality, affect each model's performance and could 

explain the observed variations in error ranges. Figures 7 through 

9 illustrate how the ANN model performs in comparison to the 

LR and NLR. Its R2 value is greater, while its RMSE and MAE 

values are lower. Model Mu predictions for strengthened RC 

beams based on testing datasets are shown in Figure 10. Figure 

11 also displays the residual error for each model using the 

training and testing datasets. As can be seen from the comparable 

estimated and predicted Mu assessments for the model in Figures 

12 and 13, the ANN model performs better than other models. 

Figure 12 shows the OBJ values for all developed models. The 

ANN, NLR, and LR models have values of 4.52 kN.m., 8.13 

kN.m., and 10.34 kN.m., respectively. Compared to the NLR and 

LR models, the ANN model's OBJ value was 80% and 129% 

lower, respectively. This further demonstrates how the ANN 

model predicts the Mu more accurately for beams strengthened 

with FRP sheets. 

Figure 13 displays the SI charge for the models that were 

provided for the training and testing procedures. It shows that, 

based on their performance as determined by the Scatter Index 

(SI) values, the three machine learning models LR, NLR, and 

ANN are compared in this study. The observed SI values for the 

data-trained set were 0.21 for LR, 0.16 for NLR, and 0.10 for 

ANN. On the other hand, it was discovered that the SI values for 

the data-tested set were 0.11 for ANN, 0.20 for NLR, and 0.23 

for LR. Noteworthy SI values include 0 and 0.1, which denote 

excellent performance; 0.1 to 0.2, which denotes good 

performance; 0.2 to 0.3, which denotes fair performance; and 0.3 

to 0.4, which denotes poor performance. In the data-tested set, the 

ANN and NLR models exhibited good performance based on 

these classifications, while the LR model performed fairly. 

During the training stage, in the testing phase, the ANN model's 

SI value is 109% lower than the LR model's, with a difference of 

110%. Furthermore, compared to the NLR model, the ANN 
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model showed reduced SI values, with declines of 60% and 82% 

in training and testing, respectively. This comparison revealed 

that the ANN model can forecast the Mu of FRP-strengthened RC 

beams more competently and accurately than NLR and LR 

models. 

In conclusion, it is important to note that any models with 

allowable errors can be utilized to predict the Mu of FRP-

strengthened RC beams without the need for experimental 

programs. In addition, compared to other models, the ANN model 

can produce more precise results. 

 

Figure 7: R2 values for testing and training datasets for several models 

have been suggested. 

 

Figure 8: RMSE values for training and testing datasets for several 

models have been suggested. 

 

Figure 9: MAE findings for training and testing datasets for several 

models have been suggested. 

 
Figure 10: Analysis of the test dataset’s model predictions in 

comparison. 

 
Figure 11: Mu residual error diagram that makes use of all available 

datasets for every model. 

 

Figure 12: Every single model's OBJ value. 
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Figure 13: Results for all models' SI performance parameters. 

7. Linear Correlation Matrix 

The data in this study were analyzed using linear Pearson's 

correlation to assess the correlation between the variables. With 

coefficients of 0.83 and 0.17, respectively, it is clear that there is 

a substantial positive correlation between the flexural capacity of 

beams and the variables beam overall depth (h) and steel 

reinforcement ratio (ρs). A rise in h and ρs is correlated with an 

increase in flexural capacity, a pattern that is replicated in the 

basic ACI equation for beam flexural strength. Additionally, 

there is a fairly positive association between M and the FRP 

modulus (EFRP). On the other hand, weak linear correlations are 

shown by f'c, ρf, and b, attributes indicating the existence of non-

linear interactions between the inputs and the target variable. 

Table 4 provides a correlation matrix of coefficients.

Table 4: Correlation matrix among variables used in the development of models. 

 b h f'c ρs ρf EFRP M 

b 1       

h -0.15673 1      

f'c -0.07142 -0.63563 1     

ρs -0.27749 -0.1363 0.195893 1    

ρf 0.067765 -0.64163 0.598635 0.108475 1   

EFRP 0.280745 0.047009 -0.17568 0.136703 -0.39686 1  

M -0.04738 0.833057 -0.51335 0.173179 -0.46885 0.141059 1 

 

8. Sensitivity and Parametric Analysis   

The ANN model, which is more accurate than the LR and 

NLR models, was used to investigate the relationship between 

contributing parameters and flexural capacity. Analyzing each 

variable's relevance and contrasting the results with those of 

previous research are necessary steps in validating this model. As 

a result, a simulated dataset was created, as indicated in Table 5, 

in which one input variable was systematically changed between 

its extremes. In contrast, the others were kept constant at their 

mean values. The variance of the target variable was plotted 

against the input variable to determine the influence of a variable. 

Sensitivity analysis was also performed using the simulated 

dataset. Normalizing the difference in target variable values 

concerning each input variable allowed us to calculate the relative 

contribution of each contributing variable.

Table 5: Parametric and Sensitivity Analysis employing a simulated dataset. 

Parameters 
Range of 

Parameters 

Number of Data 

Points 
Constant Parameters 

b (mm) 100 - 320 20 h=260mm; f’c=37MPa; ρs=0.75; ρf=0.29; EFRP=151(MPa) 

h (mm) 150 - 406 20 b=188mm; f’c=37MPa; ρs=0.75; ρf=0.29; EFRP=151(MPa) 

f’c (MPa) 21 – 66.5 20 b=188mm; h=260mm; ρs=0.75; ρf=0.29; EFRP=151(MPa) 

ρs (%) 0.388 – 2.102 20 b=188mm; h=260mm; f’c=37MPa; ρf=0.29; EFRP=151(MPa) 

ρf (%) 0.04 – 1.205 20 b=188mm; h=260mm; f’c=37MPa; ρs=0.75; EFRP=151(MPa) 

EFRP (MPa) 36 - 237 20 b=188mm; h=260mm; f’c=37MPa; ρs=0.75; ρf=0.29; 

 

The results of the sensitivity analysis are shown in Figure 14. The 

sensitivity analysis results are consistent with Pearson's 

correlation values shown in Table 4. The most significant 

parameter among those examined in this study is the 

overall depth of the beam (h), followed by the variation in bottom 

flexural reinforcement (ρs). Furthermore, the flexural capacity of 

FRP-strengthened beams is determined in part by the width of the 

beam (b) and FRP ratio (ρf), both of which are considered 

important characteristics. On the other hand, the results indicate 

that the elastic modulus (EFRP) and the concrete compressive 

strength (f'c) are the least important characteristics. Furthermore, 

upon examining ACI's flexural capacity formulas derived from 

mechanics principles (Equation (1)), it becomes evident that the 

nominal capacity is directly influenced by the effective depth and 
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steel reinforcement. As a result, the proposed model's results are 

in line with previous research, demonstrating the prediction 

model's validity for determining a beam's flexural capacity in the 

absence of observed data. The same results were obtained by 

others in the literature. Our results support the validity and 

dependability of our findings in the body of current literature 

because they are consistent with other studies[21]. 

The parametric analysis that was performed with the ANN model 

is shown in Figure 15. The bending capacity increases from 20 to 

83 kN.m., indicating a change of 63 kN.m., as the beam depth 

increases from 155 to 387 mm. Similarly, a change of 26 kN.m is 

indicated by the increase in flexural capacity from 43 kN.m to 69 

kN.m when the bottom reinforcement ratio is changed from 0.388 

to 2.016. By changing the beam width from 100 to 320 mm, the 

bending capacity increases from 42 to 58 kN.m, which is a 16 

kN.m change. Furthermore, there is a 15 kN.m enhancement in 

flexural capacity when the FRP ratio is changed from 0.04 to 

1.14. The concrete's compressive strength and the FRP sheet's 

elastic modulus cause a difference in bending capacity of 4 and 2 

kN.m., respectively. These results demonstrate the reliability of 

the created ANN model for future predictions and are in line with 

the outcomes of the sensitivity analysis and Pearson's correlation. 

The trained model is validated by the parametric study, which 

also makes sure that the trends detected by the ANN model and 

the trends in the literature are in line with each other. 

Figure 14: Contribution of the model parameters in predicting the Mu of 

strengthened RC beams. 

  

  

  

Figure 15: Parametric Analysis of the ANN Model 

Conclusions 

The current study demonstrated that when it comes to predicting 

the flexural behavior of reinforced concrete beams strengthened 

with fiber-reinforced polymer (FRP), Artificial Neural Networks 

(ANN) perform better than Non-linear Regression (NLR) and 

Linear Regression (LR) models. Our suggested ANN model 

performs satisfactorily; however, the availability of appropriate 
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data patterns affects the model's accuracy. Our suggested model 

shows promising results; however, there is a restricted number of 

research and patterns accessible in this particular field. More 

accurate and sophisticated models can be created over time with 

an increase in research. This work opens the door to more 

dependable structural engineering techniques by highlighting the 

potential of machine learning methods; specifically ANN, to 

improve the prediction accuracy of the flexural behavior of FRP-

strengthened concrete beams. 

1. The sensitivity analysis and statistical evaluation show that 

the ANN model performs better than the other two models. 

The model's R2 values are 0.95 and 0.96 for the training and 

testing datasets, respectively. Furthermore, there are 

additional sensitivity indications for the RMSE, MAE, OBJ, 

and SI in the training dataset of the ANN model; the 

corresponding values are 4.91 MPa, 3.69 MPa, 4.52, and 

0.10, respectively. As a result, the ANN model is more 

applicable and predictively accurate, making it appropriate 

for use in the preliminary design of the flexural strength of 

FPR-strengthened RC beams; 

2. The estimated flexural strength of the FRP-strengthened RC 

beam was found to be between +15% and -20% of the 

measured flexural strengths for the training datasets, 

according to the ANN model. The rate for the remaining 

models was increased to ±30%; 

3. A significant positive correlation was observed by Pearson's 

correlation analysis between the bending capacity and the 

overall depth of the beam (h) as well as the bottom flexural 

reinforcement (ρs). The results of the parametric and 

sensitivity analyses provided more evidence in favor of this 

observation. Furthermore, the ACI guidelines emphasized 

how important h and ρs are to improving the flexural capacity 

of the beams. Additionally, these factors had substantial 

contribution ratios: h contributed about 49.9%, and ρs 

contributed about 20.9% to the expected capacity, 

respectively. Furthermore, RC beam width (b) and the FRP 

ratio (ρf), which contributed 12.4% and 11.8%, respectively, 

had a moderate impact on capacity. On the other hand, the 

concrete compressive strength (f'c) and the FRP elastic 

modulus (EFRP) had minimal impact. 

The implementation of ANN models demonstrated promise in 

predicting the flexural behavior of concrete beams strengthened 

with fiber-reinforced polymer (FRP). In the future, research 

should look at different algorithms, such as genetic algorithms, as 

well as employ software like RapidMiner for superior evaluation 

and enhancement of models. 
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