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ABSTRACT 
This study explores whether vertical total electron content (VTEC or TEC) can serve as a precursor to a major earthquake (magnitude 

7) that occurred in Haiti on January 12, 2010. The analysis involves examining and correlating various ionospheric and atmospheric 

parameters. Two TEC data stations are utilized: Scub, located approximately 377.80 km from the epicentre within the earthquake 

preparation zone (EPZ), and Cro1, situated about 847.7 km from the epicentre outside the EPZ by applying the mean and standard 

deviation methods. The study reveals a noteworthy finding: a positive TEC anomaly of about 13 TECU was identified at the Scub 

station, only 11 days before the main earthquake event. This positive anomaly can be credited as a potential precursor, as it persists even 

after mitigating the impact of external factors such as geomagnetic storms and atmospheric parameters. Furthermore, the positive TEC 

anomaly is localized, as it was not observed outside the EPZ at the Crol station. 
https://creativecommons.org/licenses/by-nc/4.0/ 

Keywords: Seismo-Ionospheric Coupling; Radon Emissions; Earthquake Forecasting; Geomagnetic Activity; TEC Anomalies; Enriquillo Plantain 

Garden Fault Zone. 

1. Introduction 

Despite scientific progress, earthquake prediction remains 

elusive[1, 2]. Various methods exist, but none are universally 

reliable[3]. Scientists strive to devise an effective approach to 

preserving lives and minimizing the repercussions of seismic 

disasters[4- 6]. The domain of earthquake physics encompasses a 

multifaceted and extensive area of study[7,8]. Spanning various 

facets of the Earth's crustal composition, commencing with the 

dynamics of tectonic plates and ending in the intricate 

microscopic mechanisms governing friction, chemical reactions, 

and electric charge generation[9, 10].  For this complex topic to be 

properly looked at, it is essential to combine knowledge from a 

variety of fields, such as seismology, atmospheric and 

ionospheric physics, as well as geomagnetic activity[11]. 

Preceding seismic events, the accumulation of stress in tectonic 

plates induces to generation of diverse anomalies in the 

designated earthquake preparation zone, represented as 

earthquake precursors[12]. Presently, one of the most efficacious 

precursors lies in anomalies relating to ionospheric parameters, 

exemplified by alterations in the vertical total electron content 

(VTEC or TEC) in the ionosphere[13, 14]. This investigation has 

been predicated upon TEC anomalies utilization.  

The nations Haiti, Dominican, and the Jamaica Republic are 

positioned across the Enriquillo–Plantain Garden Fault Zone 

(EPGFZ), which represents a significant left-lateral, strike-slip 

fault system delimiting the boundaries of the Caribbean and 

North American tectonic plates[15- 17]. On January 12, 2010, Haiti 

experienced a major earthquake (ML 7.0), constituting the most 

significant occurrence in the southern region of Hispaniola since 

1751[17, 18], which also inflicted severe damage upon Port-au-

Prince. This catastrophe led to the tragic loss of over 200,000 

lives and resulted in an estimated 8 to 13 billion United States 

dollars in damages, equivalent to the entirety of the nation's gross 

domestic product, and approximately one-third of the overall 

population, has been affected by the earthquakes[19]. This study 

focuses on assessing the combined effects of seismic activity in 

conjunction with meteorological data from terrestrial sources[20], 

as well as geomagnetic and solar activity such as the global 

geomagnetic activity (Kp-index), and the disturbance time storms 

(Dst) parameters from the upper atmosphere side on the TEC 

variation[21- 23]. 

The appearance of the precursors studied varies from earthquake 

to earthquake depending on the time, location and magnitude of 

the earthquakes, so there is still a great need for more research in 
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this area, especially for a major earthquake like the one in Haiti. 

This study will examine the vertical-TEC perturbations for 

several days leading up to and following the devastating 

earthquake in Haiti in the EPGFZ. The significance of this 

research lies in the statistical correlations established between the 

atmospheric parameters and TEC perturbations, the results of 

these studies are critical for validating the coupling models and 

could enhance essential insights into earthquake prediction within 

the EPGFZ and other seismologically active regions worldwide. 

2. Data and Statistical Analysis  

2.1 Study Area 

The Caribbean region positioned within the southern expanse of 

the Middle American Ocean, constitutes an integral part of the 

Atlantic Ocean, geographically delimited by Central, North, and 

South America, as well as Haiti, and Jamaica[24]. The interior 

region of the Caribbean Plate demonstrates an east-northeastward 

movement at an angle of 70 degrees east of true north, with a 

velocity ranging between 18 to 20 mm per year relative to the 

North American Plate[25]. The oblique convergence of tectonic 

forces in the region is characterized by distinct components of 

proximal strike-slip and thrust movement. Specifically, the 

Enriquillo–Plantain Garden fault zone (EPGFZ) at a rate of 7 ± 2 

mm per year[26].  

The seismic event that occurred on January 12, 2010, registering 

a magnitude of ML7.0, stands as the most significant seismic 

occurrence in the southern sector of Hispaniola since the notable 

events transpired on September 15, 1751. The earthquake 

inflicted severe damage upon the city of Port-au-Prince 

metropolitan area, the capital city of Haiti. The study area for this 

research is the Enriquillo Plantain Garden Fault Zone (EPGFZ) 

as shown in Figure 1 (A, and B)[27, 28]. 

 
Figure 1: (A) Plate Boundaries and Faults in the Caribbean-North 

America Region: Including Surrounding Countries. (B) Surface trace, 

major active plate-boundary faults (blue lines), and seismicity in the 

Enriquillo-Plantain Garden Fault Zone (EPGFZ). 

The details of the major earthquake were downloaded from the 

United States Geological Survey (USGS) through the website 

(https://earthquake.usgs.gov/earthquakes/search/). The seismic 

events that occurred inside the Earthquake Prediction Zone (EPZ) 

of the major earthquake are included in the acquiring data, Table 

1 includes detailed information about earthquakes. 

2.2 VTEC data 

The vertical-TEC data was extracted from the Ionospheric 

Research Laboratory (IONOLAB) -Türkiye through 

(http://www.ionolab.org/index.php?page=ionolabtec&language

=en). The IONOLAB employs the regularized estimation method 

to the Global Positioning System (GPS) measurements to obtain 

vertical-TEC (VTEC) values for mid-latitude stations at 2.5-

minute intervals and publish them in TECU. One TECU 

quantifies about  1016 electrons per square meter (m2)[29]. The 

Dobrovolsky equation, expressed as preparation zone = 

(100.43ML), was utilized to accurately estimate the EPZ radius of 

the major earthquake. This equation establishes a direct 

relationship between earthquake magnitude (ML) on the Richter 

scale and the corresponding preparation zone[30]. This study 

analyses the TEC for two stations namely, Santiago de Cuba in 

Cuba (Scub) located (latitude: 20.012, longitude: -75.762) inside 

the EPZ of the major earthquake, and Christiansted Virgin Islands 

in the U.S.A (Crol) (latitude:17.757, longitude: -64.584) for the 

period of 28-12-2009 to 23-01-2010. In addition, VTEC can be 

influenced by the geomagnetic activities. To distinguish the 

seismicgenic with geomagnetic generated VTEC variations two 

more geomagnetic activities are considered: the global 

geomagnetic activity (Kp-index), and disturbance time storms 

(Dst). these parameters' data were downloaded from the OMNI 

internet-based data repository, which is part of NASA's Explorer 

system project[31]. Access to essential information on 

geomagnetic activity and space weather is made simple by this 

database. With values ranging from 1 to 9, the Kp-index 

specifically acts as a measure of the solar wind-related 

disturbances in the Earth's magnetic field. In this study, a calm 

state is defined as one with a Kp-index value below 4[32]. The 

amount of geomagnetic activity over one hour is revealed by 

disturbance time storms (Dst). It is considered a calm geomagnetic 

state if the Dst value is between -20 and 20 nT. These numbers 

serve as a benchmark for comparison for determining the 

magnitude of magnetic field disruption on Earth[33, 34].  

2.3 Statistical Analysis 

Several methods have been used to detect anomalies in time 

series data like VTEC, for example, single parameter (univariate) 

forecasting models such as the ARIMA model[35,36], multivariate 

models[37]and artificial intelligence[38, 39]. It seems that each of 

these models requires a lot of time and expertise to train and find 

the best model. That is why the method of mean and standard 

deviation was relied upon in this work. This method seems to be 

easier to use and more reliable, especially in this work where data 

ten days before and ten days after were used to determine the 

upper and lower limits for each single day using the following 

equations[20]. 

𝑈𝑝𝑝𝑒𝑟limit = 𝜇(𝑉𝑇𝐸𝐶) + 2. 𝑠𝑡𝑑(𝑉𝑇𝐸𝐶) 
𝐿𝑜𝑤𝑒𝑟limit = 𝜇(𝑉𝑇𝐸𝐶) − 2. 𝑠𝑡𝑑(𝑉𝑇𝐸𝐶) 
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For each of these days, data from 10 days before and 10 days after 

were used to construct the upper and lower limits at that time for 

example, to build the upper limit for VTEC at 10 AM on 1-1-

2010 the VTEC data at 10 AM from (December 22-31, 2009) and 

(January 2-12, 2010) were used[7, 40]. Whenever the daily VTEC 

falls above the upper bound, it is identified as a positive VTEC 

anomaly, while if it is less than the lower limit, it is identified as 

a negative VTEC anomaly. The following equations are used to 

determine the amount of anomalies. 

𝑃𝑜𝑠. 𝑑𝑉𝑇𝐸𝐶 = 𝑉𝑇𝐸𝐶(𝑡) − (𝑈𝑝𝑝𝑒𝑟𝑏𝑜𝑢𝑛𝑑 − 𝑉𝑇𝐸𝐶) 
𝑁𝑒𝑔. 𝑑𝑉𝑇𝐸𝐶 = (𝐿𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑 − 𝑉𝑇𝐸𝐶) − 𝑉𝑇𝐸𝐶(𝑡) 

To eliminate the effect of the atmosphere on tech. The degree of 

proportionality between the tech and each of the atmospheric 

parameters was calculated as follows: 

Kendall's τ (tau) Formulation: 

Kendall's τ is a non-parametric test that measures the strength and 

direction of a monotonic relationship between two variables. It is 

calculated using the following formula: 

τ= 
 Number of concordant pairs − Number of discordant pairs

   𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠
 

Spearman's ρ (rho) Formulation: 

Spearman's rank correlation coefficient is another non-parametric 

measure of the strength and direction of monotonic relationships. 

It is computed using the following formula: 

Ρ= 1-
6 ∑ 𝑑𝑖

2

𝑛(𝑛2−1)
 

Where: 𝑑𝑖 represents the difference in ranks between 

corresponding pairs of observations, and n  is the number of pairs 

of observations. 

Pearson Correlation Coefficient Formulation: 

The Pearson correlation coefficient is a parametric measure of the 

linear relationship between two variables. It is calculated using 

the following formula: 

r = 
∑(𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)

√(𝑋𝑖−
.

𝑋
̅)2(𝑌𝑖−𝑌̅)2

 

Where: 𝑋𝑖 and 𝑌𝑖 are the individual observations in the datasets X 

and Y. 𝑋̅ and 𝑌̅ are the means of the X and Y datasets, 

respectively. These formulations provide a quantitative measure 

of the relationships between variables based on different 

statistical approaches, allowing researchers to assess associations 

in their data. 

3. Results and Discussion 

In this study, the primary focus lies in the wide-ranging 

examination of the effects stemming from both seismic 

perturbations beneath the Earth's surface and geomagnetic 

activities in the upper atmosphere. Specifically, the aim is to 

discern potential correlations with variations in TEC in the 

ionosphere, a parameter of paramount importance in earthquake 

precursory research within the Enriquillo Plantain Garden Fault 

Zone. Notably, the TEC data was analyzed alongside records of 

geomagnetic and solar activities spanning from December 28, 

2009, to January 23, 2010, before and after seismic activities. 

To ensure a robust TEC data anomaly analysis, it thoroughly 

examined both upper and lower limits. Using a stringent 

calculation approach involving the mean and two standard 

deviations (μ±2σ), for time spanning 26 days: 15 days before the 

seismic event and 10 days after. This method helps to indicate 

significant TEC variations. An evaluation of the literature, as 

represented in[7, 41] .  

 Intriguingly, a discernible alteration in TEC data occurred on 

January 13, 2010, preceding the seismic events registering (7.0 

ML and 6.0 ML) on the Richter scale as shown in Figure 2. 

 

Figure 2: Exploring Fluctuations in Total Electron Content Leading Up to Macro-Earthquakes: Emphasizing Upper and Lower Confidence Intervals 

and the Influence of Solar and Geomagnetic Factors 

Noteworthy increments were observed in the ionosphere, 

particularly within the 11 days’ antecedent to the earthquakes by 

13 TECU over the upper boundary.  Additionally, a marginal 

elevation in TEC was noted a mere day prior to both seismic 
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occurrences more than (2 TECU), conspicuously evident at both 

TEC monitoring stations. Importantly, the surge surpassed the 

threshold set at (μ±2σ), reaching an approximate value of 30 

TECU at the Scub station. Because the Kp index and Dst 

parameters remain within the normal range, this anomalous surge 

is attributed to tectonic plate activity, wherein tectonic plate 

pressure culminates in the release of radon gas.  The prevailing 

theory suggests that the emanation of radon (Rn) gas from 

epicentral regions plays a significant role in atmospheric 

ionization, as documented in the literature[42, 43]. This radioactive, 

colourless, and tasteless noble gas permeates seawater or soil[44], 

eventually infiltrating the atmosphere, where it ionizes particles 

and augments atmospheric TEC content. This mechanism holds 

significant promise for pre-earthquake prognostication. This is 

attributed to radon's ability to prompt atmospheric ionization[45]. 

The presence of radon-generated ions in the air is believed to 

cause an upward movement of the upper ionosphere, where they 

migrate toward the lower ionosphere. Several satellite 

measurements have confirmed this phenomenon in the epicentral 

regions before seismic events. This suggests that TEC anomalies 

are valuable seismic precursors at specific locations[46]. 

On December 31, 2009, the observed precipitation rate within 24 

hours around Cor1 station resulted in the accumulation of surface 

water, saturating soil pores, and blocking radon gas emanation. 

This phenomenon delays the release of radon gas into the 

atmosphere, subsequently impacting ionization rates and Total 

Electron Content (TEC) variations[7]. As a consequence, TEC 

values at the Cor1 station persist within the approximate normal 

range compared to the Scub station TEC anomaly. This 

discrepancy elucidates the TEC surge observed on January 20, 

2010, one week after seismic activity at the Cor1 station. The 

surge, exceeding the upper-level threshold by 1.75 TECU, is 

ascribed to variances in the disturbance time storms (Dst) 

parameter, plummeting to below -20 nT, constituting an 

anomalous reading. These fluctuations are posited to have exerted 

a discernible influence on TEC variations. The Kp- indicates a 

normal level during the observation period. 

Another crucial factor considering the spatial separation between 

earthquake epicentres and TEC stations, a thorough assessment 

(Table 1) shows both events are roughly twice as far from Cor1 

compared to Scub. Consequently, Cor1's readings seem normal. 

Also, Cor1 is outside the earthquake preparation zone based on 

the Dobrovolsky calculation, supporting the idea that the absence 

of TEC anomalies is likely due to these factors. 

Table 1: Earthquake Data including Date, Magnitude, and Preparation Zone in the Study Area. 

Date and Time Lat Long 
Depth 

(km) 
Mag Preparation zone (km) 

Distance from 

(Cro1) km 

Distance from 

(Scub) km 

12-01-2010 21:53 

12-01-2010 22:00 

18.443 

18.387 

-72.571 

-72.784 

13 

10 

7 

6 

1023.29 

380.19 

847.7 

869.8 

377.80 

361.23 

 

To extensively evaluate the intricate interplay between 

ionospheric variations and meteorological data from the same 

geographical locale bath TEC stations (Scub, and Cor1) were 

accurately examined. These invaluable datasets were sourced 

from the reputable “POWER Data Access Viewer v2.0” and 

encompass a range of pivotal meteorological parameters, 

including precipitation levels, atmospheric temperature, surface 

air pressure, humidity levels, and wind speed. The meteorological 

data played a crucial role in understanding how atmospheric 

conditions affect the movement and release of radon gas from the 

Earth's surface into upper atmospheric layers leading to increased 

ionization rate. The meteorological parameters for the Crol 

(17.757, -64.584) station are shown in Figure 3.   

The study observed stable conditions in key meteorological 

parameters such as specific humidity, atmospheric temperature, 

and surface pressure over the observation period. However, there 

was a notable increase in precipitation rate (approximately 0.8 

mm/hour) recorded one day after a seismic event. The correlation 

between parameters is displayed in Table 2.  

The meteorological parameters during the observation time for 

Scub station (20.012, -75.762) are shown in Figure 4.   

At the Scub station, the majority of meteorological parameters 

exhibited a remarkable degree of stability. However, a slight 

deviation was observed in specific humidity, which reached its 

nadir 24 hours prior to the seismic event. Additionally, a marginal 

uptick in wind speed was noted over the same period. These 

observations highlight the dynamic nature of atmospheric 

conditions preceding seismic events. 

This study employed three correlation coefficient tests (Kendall's 

tau, Spearman's rho, and Pearson) to assess robustness, parameter 

intensity, direction, and effect sizes related to each other. This 

analytical framework enabled a comprehensive evaluation of all 

parameters. 

Spearman's rho (ρ) gauges the intensity and direction of a 

monotonic association between two variables[47]. Monotonicity 

entails a consistent ascending or descending pattern, not strictly 

linear. Like the Pearson correlation, it ranges from -1 to +1. 

Kendall's tau (τ) serves as another metric for evaluating the 

strength and direction of a monotonic correlation between two 

variables[48]. It bears resemblance to Spearman's rho and shares a 

-1 to +1 range, denoting perfect negative or positive monotonic 

relationships, with 0 indicating none. Kendall's tau, akin to 

Spearman's rho, does not presume linearity and applies to 

variables with non-normal distributions[49]. The parameters 

correlation coefficient is shown in the Table 2. 

Table 2. displays correlation coefficients between TEC (Total 

Electron Content) and various meteorological variables 

(Temperature, Humidity, Precipitation, Surface Pressure, and 

Wind Speed) using three different correlation methods: Kendall's 

τ, Spearman's ρ, and Pearson.
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Table 2: Correlation Coefficients for Robustness, Intensity, and Direction of Parameters: Pearson, Spearman's (ρ), and Kendall's (τ) Analysis. 

Correlations Descriptive Statistics 

Cro1 TEC station Temperature Humidity Precipitation Surface Pressure Wind Speed  Mean Std. Deviation 

Kendall's 

(τ) 
TEC   

Correlation 

Coefficient 
-0.105 0.188 0.188 0.225 0.136 TEC (cor1) 7.34 0.81 

Sig. (2-tailed) 0.453 0.179 0.184 0.108 0.332 Temperature 26.54 0.42 

Spearman's 

(ρ) 
TEC   

Correlation 

Coefficient 
-0.185 0.248 0.244 0.361 0.177 Humidity 16.60 0.73 

Sig. (2-tailed) 0.365 0.222 0.229 0.070 0.387 Precipitation 0.04 0.06 

Pearson TEC   

Correlation 

Coefficient 
-0.147 0.291 0.241 0.314 0.032 

Surface 

Pressure 
101.60 0.13 

Sig. (2-tailed) 0.473 0.150 0.235 0.118 0.877 Wind Speed 5.04 1.84 
 

Scub TEC station Temperature Humidity Precipitation Surface Pressure Wind Speed  Mean Std. Deviation 

Kendall's 

(τ) 
TEC   

Correlation 

Coefficient 
0.046 0.132 -0.188 0.108 0.089 TEC (scub) 7.62 0.96 

Sig. (2-tailed) 0.741 0.343 0.233 0.440 0.523 Temperature 23.73 1.64 

Spearman's 

(ρ) 
TEC   

Correlation 

Coefficient 
0.099 0.158 -0.237 0.183 0.155 Humidity 13.49 1.61 

Sig. (2-tailed) 0.631 0.442 0.244 0.371 0.450 Precipitation 0.01 0.03 

Pearson TEC   

Correlation 

Coefficient 
-0.291 -0.187 -0.070 0.333 0.315 

Surface 

Pressure 
99.77 0.20 

Sig. (2-tailed) 0.150 0.359 0.733 0.097 0.117 Wind Speed 4.30 1.32 

*. Correlation is significant at the 0.05 level (2-tailed).            **. Correlation is significant at the 0.01 level (2-tailed). 
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Kendall's (τ) Correlation: For TEC (Cro1) and Temperature, the 

correlation coefficient is (-0.105), which indicates a weak 

negative correlation. However, the p-value significant is 0.453, 

suggesting that this correlation is not statistically significant. For 

TEC (Cro1) and Humidity, the correlation coefficient is 0.188, 

indicating a weak positive correlation. Again, the p-value is 

0.179, indicating a lack of statistical significance. Similarly, for 

Precipitation, Surface Pressure, and Wind Speed, the correlations 

are weak, and none of them are statistically significant.  

The results from Spearman's correlation are similar to Kendall's 

τ, with slightly different correlation coefficients and p-values. 

None of the correlations are statistically significant. 

Pearson Correlation: For TEC (Cro1) and Temperature, the 

correlation coefficient is -0.147, indicating a weak negative 

correlation. The p-value is 0.473, indicating that this correlation 

is not statistically significant. For Precipitation, Humidity, 

Surface Pressure, and Wind Speed, the correlations are weak, and 

none of them are statistically significant. 

 

Figure 3: Meteorological Parameters Surrounding Cor1 TEC station. 

 

Figure 4: Meteorological Parameters Surrounding Scub TEC station. 

 

 

Conclusions 

This research has systematically explored the complex interplay 

between subterranean seismic disturbances, geomagnetic 

phenomena in the upper atmosphere, and their consequential 

impacts on Total Electron Content (TEC) in the ionosphere. the 

comprehensive investigation entailed a detailed analysis of TEC 

data, augmented by assessments of geomagnetic, solar activities, 

and meteorological influences, during a pivotal timeframe 

encompassing two notable seismic episodes in the Enriquillo 

Plantain Garden Fault Zone. 

A salient finding of this study was the marked modulation in TEC 

readings antecedent to these seismic occurrences, suggesting a 

plausible linkage. This prominent deviation in TEC values, 

particularly pronounced at the Scub station, was deduced to be 

the result of radon gas emissions ensuing from pre-seismic 

tectonic movements. The substantial spatial separation of the 

Cor1 station from the earthquake epicentres, in conjunction with 

its positioning beyond the demarcated earthquake preparatory 

zone, elucidated the non-observation of TEC anomalies there. 

Nonetheless, the correlation analyses unveiled a negligible and 

largely ineffective relationship between meteorological variables 

and TEC alterations at both monitoring sites. 

Overall, the findings of this research underscore the significant 

role of ionospheric TEC variations as indicators for earthquake 

prediction. Furthermore, they underscore the imperative need for 

holistic and integrative approaches in the development of 

comprehensive earthquake prediction methodologies. These 

insights serve as a cornerstone for future endeavours in the realm 

of seismo-ionospheric research, potentially revolutionizing our 

approach to seismic hazard assessment and mitigation strategies. 
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