TY - JOUR ID - 164176 TI - Effect of Blending Aromatic and Oxygenates Additives with Fuels to Enhance Fuel Properties JO - Passer Journal of Basic and Applied Sciences JA - PSR LA - en SN - 27065944 AU - Kareem, Ahlam Mohamad Shakoor AU - Ahmed, Zheno Kareem AU - Mustafa, Sadonya Jamal AD - Petroleum and Energy Engineering department, Technical College of Engineering, Sulaimani Polytechnic University, Kurdistan Region, Iraq AD - Petroleum department, Kurdistan Technical Institute, Kurdistan Region, Iraq Y1 - 2023 PY - 2023 VL - 5 IS - 1 SP - 30 EP - 37 KW - Gasoline KW - Light Naphtha KW - Chemical additives KW - Research Octane number KW - Motor Octane number KW - Density KW - distillation curve DO - 10.24271/psr.2022.360689.1159 N2 - This work aims to show the influence of several oxygenates and aromatic additives in different types of unleaded fuels in the Kurdistan region of Iraq on upgrading the physicochemical properties of blends. Consuming super-grade gasoline as a fuel for automotive cars can produce large amounts of environmental emissions, a severe global problem, especially in the Kurdistan region in recent years. The physicochemical properties of mixtures, such as the research octane number (RON), Motor Octane number (MON), density, and distillation curves, will be tested by using ERASPEC spectroscopy as a fuel properties analyzer. As a result, the blending process has improved the gasoline grade to super grade by enhancing the physicochemical properties of blends. The additives used in this work as oxygenators are; Ethanol and Methyl Tertiary Butyl Ether (MTBE) added to two base fuels, light Naphtha, and unleaded Gasoline, in various ratios of (5%, 10%, 15% and 20%). An aromatic component (Aniline) is also mixed with light Naphtha and base gasoline in low concentrations (1%, 3%, and 5%). The results of blending Ethanol, MTBE, and Aniline with fuels demonstrate that the Research Octane Number RON and Motor Octane Number MON of fuels increase with the addition of different ratios of all-octane boosters. The best-recorded result of both types of octane numbers (13 points increased from the bases) is recorded by blending 3% of Aniline with the fuels. However, Ethanol can provide a more significant increase in (RON) and (MON) than MTBE for the same blending ratio. The Density of the mixtures also increases because both additives have a higher density than the fuel due to the presence of different hydrocarbon compounds. The mixture's distillation curves are distorted, especially when the low to the middle percent of blenders are added to fuels. However, higher percentages of additives show lower distillation temperatures. UR - https://passer.garmian.edu.krd/article_164176.html L1 - https://passer.garmian.edu.krd/article_164176_5c79f6ce42c9adb193ff95f9230d62e2.pdf ER -