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ABSTRACT 
      The beta-binomial model that is generated by a simple mixture model has been commonly applied in the health, physical, and social 

sciences. In clinical and public health, overdispersion occurs due to biological variation between the subjects of interest. Both the 

binomial and beta-binomial models are applied to different problems occurring in rational test theory. In this study, we focused on 

modeling overdispersion for binomial distribution. The main aim was to show a complete and extensive understanding of the beta-

binomial model and updated form by broaden its practical applications in the field of breast cancer with hormone medication. It is 

observed in different independent Bernoulli trials yes/no (𝑥𝑖 = 1, 0) experiments with success probabilities 0< 𝑝𝑖 <  1 and compare the 

model in a sequence of 𝑛𝑖. The performance of the maximum likelihood estimates technique that is used in moderate and small samples 

𝑛𝑖 by a Newton-Raphson iterative method using Matlab package. We have found that using hormones for other treatments have 

complication leading to breast cancer. We took 20 investigational testers in Hiwa Hospital for cancer treatment in Sulaymaniyah 

province, with proportion 𝑝𝑖  is varying from 9.7% to 50 %. In addition, we concluded that the beta-binomial theory is a good alternative 

of binomial model. This is due to the fact that the beta-binomial model has provided a robust estimate for events from heterogeneous 

binomial studies. 

© 2020 Production by the University of Garmian. This is an open access article under the LICENSE  

https://creativecommons.org/licenses/by-nc/4.0/ 
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1. Introduction 

     In statistics, overdispersion is the occurrence of bigger 

changeability in a data set rather than would be predictable in a 

statistical model. When the value of the determined variance is 

higher than its value in a theoretical model, one can say 

overdispersion will be observed [1]. On the other hand, under 

dispersion is an indication of less variation in the data than 

assumed. Overdispersion is an ordinary feature in applied data 

analysis; this is due to the fact that populations are 

frequently heterogeneous (non-uniform) contrary to the 

assumptions implied within broadly used simple parametric 

models [1]. Pearson introduced the beta-binomial model in 1925 

and then more formally described by Skellam in1948 which is a 

general method for obviously explanation for the overdispersion 

[2]. For example, this model has several applications in different 

areas, such as explained by Chatfield and Goodhardt in 1976 for 

buying performance of the user, and Gange in1996, who 

considered the impact of policy changes on suitability of hospital 

admissions. In addition, in 1977, Aeschbacher showed that a 

beta-binomial distribution offers a better application than the 

typical distribution in biological tests involving mice when the 

data used were based on a large number of death counts. Single 

parameter distributions, such as Poisson and binomial, suggest 

that the variance is determined by the mean value [3]. In many 

cases and especially in analysis of biological data, the mean-

variance relationship fails generally due to existence 

of overdispersion, where the data have a higher variance than 

anticipated under the simple model of Cox (1983), Hinde & 

Demetrio (1998) [4]. A beta-binomial distribution is 

a combination of binomial and beta distribution and it is one of 

the simplest Bayesian models. A distribution is beta-binomial 

with the probability of success p, in a binomial distribution has a 

beta distribution with shape parameters α > 0 and β > 0 [4], [5].    

In this paper, we are going to examine the beta-binomial 

distribution model for a 20 samples of cancer cases for various 

number of patients who are tested positive for breast cancer. The 

causes of cancer cases are correlated to the history of patients who 
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took hormones for other treatment, and having family history, 

genetics, obesity, age, menstruation, residence, smoking, alcohol, 

etc. 

2. The Review of Beta-Binomial Distribution 

The investigation of proportions has been communicated about 

commonly from a varied collection of views. A representative 

idea is whether the data follows a binomial or multinomial 

distribution. In some situation, a couple authors, Kleinman and 

Lee, have considered that as far as they can tell information which 

gives off an impress of presence binomial proportions now and 

again show difference which outcomes in further projecting 

variance than would be normal in the binomial distribution 

conditions [2], [5], [6]. The beta-binomial model, after associated 

with numerous examinations, can be realized as developing as of 

two-organize methods. If 𝒙 is a random variable, which is 

distributed with binomial distribution, 𝑩(𝒙; 𝒏, 𝒑), then the 

probability mass function of 𝑥 is given by: 

𝐵(𝑥; 𝑛, 𝑝) = (
𝑛
𝑥
) 𝑝𝑥(1 − 𝑝)𝑛−𝑥, 0 ≤ 𝑝 ≤ 1.              (1) 

Where 𝑛 is the sample size of the data and 𝑝 is the probability of 

success distinct 𝑥. The mean and variance of the binomial 

distribution are 𝑛𝑝 and 𝑛𝑝(1 − 𝑝), respectively. Supposing that 

the probability of success 𝑝 is distributed with Beta distribution, 

𝐵𝑒𝑡(𝑝; 𝛼, 𝛽), then the probability density function of 𝑝 is defined 

as: 

𝐵𝑒𝑡(𝑝; 𝛼, 𝛽) =
Γ(𝛼+𝛽)

Γ(𝛼)Γ(𝛽)
𝑝𝛼−1(1 − 𝑝)𝛽−1.              (2) 

For some 𝛼, 𝛽 > 0 are two positive parameters and Γ is the 

gamma function in the domain [0, 1], then 𝜇 =
𝛼

𝛼+𝛽
 and 

𝛼𝛽

(𝛼+𝛽+1)(𝛼+𝛽)2
= 𝛾𝜇(1 − 𝜇) are the mean and the variance of  beta 

distribution, respectively, where 𝛾 =
1

𝛼+𝛽+1
. The beta-binomial 

distribution is a mix of (1) and (2), which is represented by 

𝐵𝐵(𝑥, 𝑛; 𝛼, 𝛽) which can be find in [7]. In other words, if 𝑥 is a 

random variable where distributed with this combined 

distribution, then the probability mass function of x is: 

𝐵𝐵(𝑥, 𝑛; 𝛼, 𝛽) = (
𝑛
𝑥
)

Γ(𝛼+𝛽)Γ(𝛼+𝑥)Γ(𝛽+𝑛−𝑥)

Γ(𝛼)Γ(𝛽)Γ(𝛼+𝛽+𝑛)
𝑝𝛼−1(1 − 𝑝)𝛽−1.   (3) 

Where, 𝑥 = 0,1,… , 𝑛 and 𝛼, 𝛽 > 0. It can be realized that 𝑛 is the 

sample size of all individuals and 𝑥 is the total number of 

concerned (success) in the data. It is recognized that both mean 

and variance are 
𝑛𝛼

𝛼+𝛽
= 𝑛𝜇 and 𝑛𝜇(1 − 𝜇) + 𝛾𝜇(1 − 𝜇)𝑛(𝑛 − 1) 

of the beta-binomial distribution, for 𝛾 =
1

𝛼+𝛽+1
  [3], [8]. 

Now, supposing that we have 𝑘 different samples, 𝑥𝑖 , (𝑖 =
1,… , 𝑘) is the number of success in the 𝑖th sample and 

𝑛𝑖 , (𝑖 = 1,… , 𝑘) in the experiment. If 𝑝𝑖  is denote the proportion 
𝑥𝑖

𝑛𝑖
, for 𝑖 = 1,… , 𝑘, then there will be two stage model: 

𝑥𝑖~𝐵(𝑥𝑖 ; 𝑛𝑖, 𝑝𝑖), 0 ≤ 𝑝𝑖 ≤ 1.                                                      (4) 

𝑝𝑖~𝐵𝑒𝑡(𝑝𝑖; 𝜇, 𝜃) 𝑖. 𝑖. 𝑑.                                                               (5) 

Where 𝜇 =
𝛼

𝛼+𝛽
 is the mean and 𝜃 =

1

𝛼+𝛽
 is an amount of variance 

of beta distribution, then we can certainly estimate the mean of 𝑥𝑖 

is 𝜇 and its variance is 
𝜇(1−𝜇)

𝑛𝑖
(

𝑛𝑖𝜃+1

1+𝜃
), it can be seen that (

𝑛𝑖𝜃+1

1+𝜃
) 

is the amount multiplier of the variance of binomial distribution. 

In this study, the means and variance of 𝑥𝑖 in terms of 𝛼 and 𝛽 

are estimated also, we compare the results to the estimations in 

terms of 𝜇 and 𝜃 in [2], [9], [10].  The beta-binomial probability 

distribution with different values of parameters 𝛼, 𝛽 and constant 

𝑛 is plotted in Figure 1, the cumulative distribution is plotted in 

Figure 2.  Special cases of the binomial distribution include the 

beta-binomial distribution 𝑛 = 10, 𝛽 = 400 and 𝛼 = 600, 

respectively. 

 

Figure 1: The probability function of beta-binomial random variable 

with some specific values of, and of(𝑛),(𝛼)and (𝛽)

 

Figure 2: The cumulative distribution function of beta- binomial with 

some specific values of (𝑛, 𝛼, 𝛽) 
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2.1 Estimation of Parameters 

The moment and maximum likelihood estimations are two 

techniques for estimating the parameters 𝛼 and 𝛽 (or 𝜇 and 𝜃). In 

the first subsection, we review the moment estimation and in the 

second subsections the maximum likelihood estimation and 

derivations of the two methods can found in [9]. 

2.1.1 Moment Estimation of "𝝁" and "𝜽" 

The techniques of estimating beta-binomial distribution 

considered by many authors for example   Kleinman is one of 

them that considered beta-binomial distribution, he provided an 

evaluation for the mean by using moments, he determined a 

greatest sufficiency results, since this technique is certainly 

evaluate the parameters, compared by the other techniques [4], 

[5], [11]. The steps of Kleinman can be view as follows [7], [9], 

[12]: 

    If  �̂� = ∑
𝑤𝑖𝑝𝑖

𝑤

𝑘
𝑖=1 , 𝑤 = ∑ 𝑤𝑖

𝑘
𝑖=1  and 𝑤𝑖 =

𝑛𝑖

1+𝛾(𝑛𝑖−1)
.             (6) 

Suppose the least square approximation𝑆 = ∑ 𝑤𝑖
𝑘
𝑖=1 (𝑝𝑖 − �̂�)2. 

Consider, �̂� and 𝑆 are equal to their expectation, then we get the 

estimation for 𝜇 and 𝛾: 

�̂� = �̂�, and 𝛾 =
𝑆−𝑝�̂�[∑

𝑤𝑖
𝑛𝑖

(1−
𝑤𝑖
𝑤

)𝑘
𝑖=1 ]

𝑝�̂�[∑ 𝑤𝑖(1−
𝑤𝑖
𝑤

)−∑
𝑤𝑖
𝑛𝑖

(1−
𝑤𝑖
𝑤

)𝑘
𝑖=1

𝑘
𝑖=1 ]

                           (7) 

Where �̂� = 1 − �̂�. Hence, we can find the value of 𝜃, by using 

the relation 𝜃 =
𝛾

1−𝛾
. 

The moment estimation depends on {𝑤𝑖}, the choice of the 

weights. This is a notable outcome as {𝑤𝑖} are been reciprocally 

corresponding to the variance of 𝑝𝑖 , at that point �̂� has the 

minimum variance among entire linear unbiased estimations of 

𝜇. This characteristic drove Kleinman to think about the 

accompanying weights: [13] 

wi =
ni

1+γ(ni−1)
                                                                              (8) 

 The complexity of the estimations of Kleinman began when 

equation (8) is a function of the variable γ, which we want to 

estimate it. So, Kleinman puts the values of the weighting wi =
ni or wi = 1, which is a result of putting γ = 1 or γ = 0. Chuang-

Stein suggested refining Kleinman's empirical weighting form by 

continuing more steps [6]. Especially, an estimate for 𝛾 can be 

deduced using the parameter �̂�, the corresponding weights, along 

with equation (8). This new 𝛾 estimation can be utilized to renew 

𝑤𝑖  resulting other estimations for both 𝜇 and 𝛾. This procedure 

can be repeated many times until the difference between 

estimations for both of  𝜇 and 𝛾 will be smaller than the order of 

10−6. 

2.1.2 Maximum Likelihood Estimation of the Parameters "𝝁" 
and "𝜽" 

If 𝑥 is the number of responses of a sample with size 𝑛 of subjects 

that responding to the particular dosage, then the proportion 
𝑥

𝑛
 is 

a significant form of biological, physical, chemical and real-life 

discrete data. Binomial distribution is one of those distributions 

that can be used to estimate the mean and variance of the data, 

but in some cases the variance of the data is a large value, so there 

is overdispersion, in such a case beta-binomial is a common 

distribution that can be used to reduce the variance and 

compromise the over dispersion [1], [12], [14]. The maximum 

likelihood technique is a way to estimate the values of parameters 

of 𝛼 and 𝛽 consequently, 𝜇 and 𝜃 for the data, to give a best 

approximation with a small variance [7]. Suppose that we have 𝑘 

different sample sizes 𝑛1, 𝑛2, … , 𝑛𝑘 with 𝑘 different numbers 

𝑥1, 𝑥2, … , 𝑥𝑘 that responding response, then the equation for the 

maximum likelihood of the beta-binomial distribution according 

to the parameters 𝛼 and 𝛽 is: 

𝐿(𝛼, 𝛽) = ∏ (
𝑛𝑖

𝑥𝑖
)

𝐵𝑒𝑡𝑎(𝛼+𝑥𝑖,𝛽+𝑛𝑖−𝑥𝑖)

𝐵𝑒𝑡𝑎(𝛼,𝛽)
𝑘
𝑖=0 .                                      (9) 

Such that 𝐵𝑒𝑡𝑎(𝛼, 𝛽) =
Γ(𝛼)Γ(𝛽)

Γ(𝛼+𝛽)
 is the beta function. The best 

approximate values are the solution of the log likelihood method, 

that is we can use the logarithm function for equation (9) to obtain 

a best approximation for the data, and we get the log likelihood 

equation: 

𝑐 − ∑ 𝑛𝑖 log(𝐵𝑒𝑡𝑎(𝛼, 𝛽))𝑘
𝑖=1 + ∑ 𝑛𝑖 log(𝐵𝑒𝑡𝑎(𝛼 + 𝑥𝑖 , 𝛽 +𝑘

𝑖=0

𝑛𝑖 − 𝑥𝑖)).                                                                                  (10) 

 Where 𝑐 is a constant, then we differentiate (10) with respect to 

𝛼 and 𝛽, to get a best solution for fitting the data using the log 

likelihood equation of Beta-Binomial distribution [7], then we get 

the following non-linear system equation for estimating  𝛼 and 

𝛽is: 

𝜕 log 𝐿(𝛼,𝛽)

𝜕𝛼
= ∑ ∆1(𝛼, 𝑥𝑖)

𝑘
𝑖=1 − ∑ ∆1(𝛼 + 𝛽, 𝑛𝑖)

𝑘
𝑖=1 = 0.            (11) 

𝜕 log 𝐿(𝛼,𝛽)

𝜕𝛽
= ∑ ∆1(𝛽, 𝑛𝑖 − 𝑥𝑖)

𝑘
𝑖=1 − ∑ ∆1(𝛼 + 𝛽, 𝑛𝑖)

𝑘
𝑖=1 = 0.  (12) 

The equations (11) and (12) are two complicated systems on non-

linear equation, where ∆1 is a series function of two variables 𝑚 

and 𝑛 defined as follows [7]: 

∆1(𝑚, 𝑛) =
1

𝑚 + 𝑛 − 1
+

1

𝑚 + 𝑛 − 2
+ ⋯ +

1

𝑚
. 

The log likelihood equation is also can be used to find the 

covariance of the data. This means, if we differentiate the log 

likelihood equation two times with respect to 𝛼 and  𝛽, then we 

get the Hessian matrix, which can be used to deduce the 

covariance, or standard error, of data, that is  

𝐻(𝛼, 𝛽) =

[
 
 
 
 
𝜕2 log 𝐿(𝛼, 𝛽)

𝜕𝛼2

𝜕2 log 𝐿(𝛼, 𝛽)

𝜕𝛼𝜕𝛽

𝜕2 log 𝐿(𝛼, 𝛽)

𝜕𝛼𝜕𝛽

𝜕2 log 𝐿(𝛼, 𝛽)

𝜕𝛽2 ]
 
 
 
 

 

     Where,  

𝜕2 𝑙𝑜𝑔 𝐿(𝛼,𝛽)

𝜕𝛼2 = −∑ ∆2(𝛼, 𝑥𝑖)
𝑘
𝑖=1 + ∑ ∆2(𝛼 + 𝛽, 𝑛𝑖)

𝑘
𝑖=1 , 

𝜕2 𝑙𝑜𝑔 𝐿(𝛼,𝛽)

𝜕𝛽2 = −∑ ∆2(𝛽, 𝑛𝑖 − 𝑥𝑖)
𝑘
𝑖=1 + ∑ ∆2(𝛼 + 𝛽, 𝑛𝑖)

𝑘
𝑖=1 , 

𝜕2 𝑙𝑜𝑔 𝐿

𝜕𝛼𝜕𝛽
= ∑ ∆2(𝛼 + 𝛽, 𝑛𝑖)

𝑘
𝑖=1 , 
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where, ∆2(𝑚, 𝑛) is a function of two variable 𝑚 and 𝑛, which is 

defined by  

∆2(𝑚, 𝑛) =
1

(𝑚 + 𝑛 − 1)2
+

1

(𝑚 + 𝑛 − 2)2
+ ⋯+

1

𝑚2
 

The inverse of the matrix 𝐻(𝛼, 𝛽), is the covariance matrix and 

the standard error of 𝛼 and 𝛽. Hence, can estimate 𝛼 and 𝛽 by 

solving the equations (11) and (12), consequently we can find the 

values of 𝜇 and 𝜃 from their relation with 𝛼 and 𝛽. In another 

word, it can be directly used to estimate  𝜇 and 𝜃 for the two-stage 

model (4) and (5) as follows: 

Suppose that 𝑓𝑥(𝑥 = 0. 1. … . 𝑘) is the determined frequencies of 

𝑘 trial, subsequently the maximum likelihood equation converted 

to [7] 

𝐿(𝛼, 𝛽) = ∏[𝐵𝐵(𝑥, 𝑛; 𝛼, 𝛽)]𝑓𝑥𝑖

𝑘

𝑖=0

 

If 𝑆𝑖 = ∑ 𝑓𝑥
𝑖
𝑥=0 , then 𝑆𝑘 = ∑ 𝑛𝑖 =𝑘

𝑖=1 𝑛 , where 𝑛 is the total 

sample size of all individual trials combined, then the log 

likelihood equation for the model (4) and (5) has the form: 

𝑐 − 𝑆𝑛 ∑ [log(1 + 𝑖𝜃)]𝑛−1
𝑖=1 + ∑ [(𝑆𝑛 − 𝑆𝑖) log(𝜇 + 𝑖𝜃) +𝑛−1

𝑖=0

𝑆𝑛−1−𝑖 log(1 − 𝜇 + 𝑖𝜃)].                                                      (13) 

As in similar way of estimation of a 𝛼 and 𝛽, differentiating (13) 

with respect to 𝜇 and 𝜃, then we get the maximum log likelihood 

equation, which is a system of non-linear equation functions of 

the form: 

𝜕 log 𝐿(𝜇,𝜃)

𝜕𝜇
= ∑ [

𝑆𝑘−𝑆𝑖

𝜇+𝑖𝜃
−

𝑆𝑘−1−𝑖

1−𝜇+𝑖𝜃
]𝑘−1

𝑖=0 = 0.                          (14) 

𝜕 log 𝐿(𝜇,𝜃)

𝜕𝜃
= ∑ 𝑖 [

𝑆𝑘−𝑆𝑖

𝜇+𝑖𝜃
−

𝑆𝑘−1−𝑖

1−𝜇+𝑖𝜃
−

𝑆𝑘−1−𝑖

1+𝑖𝜃
]𝑘−1

𝑖=0 = 0.           (15) 

By solving equations (14) and (15), we get a direct estimation of 

𝜇 and 𝜃. Also, differentiating (13) partially with respect to 𝜇 and 

𝜃 we get the Hessian matrix, which is the inverse of the 

covariance matrix for data by using the model (4) and (5). Once, 

we obtain the maximum log likelihood for the data by using any 

of the above method, we need to obtain the likelihood ratio, which 

requires maximum log likelihood equation of Binomial 

distribution [7], this is an equation of: 

log 𝐿 = ∑ [log (
𝑛𝑖

𝑥𝑖
) + 𝑥𝑖 log 𝑝𝑖 + (𝑛𝑖 − 𝑥𝑖) log(1 − 𝑝𝑖)]

𝑘
𝑖=1 . (16) 

Then the likelihood ratio is defined as: 

𝜒2 = 2(𝐿𝐵𝐵 − 𝐿𝐵).              (17) 

Where 𝐿𝐵 and 𝐿𝐵𝐵  are the log likelihood of Binomial and Beta-

Binomial distributions respectively [12]. A non-linear equation 

system of (11) and (12), which there solution for 𝛼 and 𝛽 is 

complicated, for this reason we have to use Newton-Raphson 

technique for resolving these equations, again using Newton-

Raphson method requires mathematical software, many authors 

uses some packages of R program for solving the equations (11) 

and (12) or equivalently (14) and (15), for example [2], [3], [14]. 

In this study, we wrote a MATLAB program for solving these 

equations, with computing the measurements of 𝛼, 𝛽, 𝜇, 𝛾 and 𝜃. 

2.2 Test for Overdispersion 

Before assuming the Beta-Binomial model for analyzing a set of 

data, it should be tested to find out a problem of overdispersion 

to the degree where the beta- binomial model would be a better 

and more acceptable than the simple Binomial model [3], [5], 

[12]. Since the value of  (𝑝)can be estimated, it can be directly 

tested whether (𝑝) is significantly greater than zero. However, 

this test has less sensitivity to detect departure from Binomial. 

This is due to the fact that the boundary problems will appear as 

we check whether a positive-valued parameter is larger than zero. 

There are several ways to examine overdispersion, knowing that 

[3]  

𝐸(𝑝𝑖) =  𝜇 =  
𝛼

𝛼 + 𝛽
  , 

 V(pi) =  
𝛼𝛽

(𝛼 + 𝛽 + 1)(𝛼 + 𝛽)2
= γμ(1 − μ) 

𝛾 =
1

(1 + 𝛼 + 𝛽)
 

If we have a way to estimate the value 𝛾, then we can roughly 

know whether 𝛾 is zero. There will be no significant 

overdispersion as the value of 𝛾 is close to zero, and thus the 

binomial model will completely define the data. 

2.2.1 Likelihood Ratio Test: 

Another approach is the likelihood ratio test (LRT) (16). In the 

null hypothesis, the underlying distribution is referred to as 

binomial. Whereas in the alternative hypothesis, the distribution 

is referred to as beta-binomial. The likelihood ratio test statistic 

is [2], [3], [12].  

This  χ2 test statistic (17) agrees well with a χ2 distribution that 

has 1 degree of freedom, which is difference on the number of 

parameters for each distribution. It should be noted that the same 

boundary problem applies also for this test. 

2.2.2 Tarone’s Z statistic: 

In order to not face the boundary problem, an alternative statistic 

called Tarone’s Z statistic Tarone (1979) will be employed. This 

statistic can be used well as a fit test of the Binomial distribution 

beside the BB distribution [12], 

𝑍 =  
𝐸−∑ 𝑛𝑖

𝑘
𝑖=1

√2 ∑ 𝑛𝑖(𝑛𝑖−1)𝑘
𝑖=1

                                                                   (18) 

where 

E=∑
(𝑥𝑖−𝑛𝑖𝑝)2

𝑝(1−𝑝)

𝑘
𝑖=1  

P=∑
𝑥𝑖

𝑛𝑘

𝑘
𝑖=1  

The statistic Z has known to have an asymptotic standard which 

is a normal distribution of binomial distribution under the null 

hypothesis. [12], [15] 
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2.3 Applications of Maximum Likelihood of Beta-Binomial 
Distribution 

Here, the maximum log likelihood of beta-binomial distribution 

(10) will be used for compromise the overdispersion of binomial 

distribution. At the first example we use the table of Chuang-

Stein’s article [6], which is a data of 15 studies of patients that 

stimulated with anti-cancer chemical compound that play the role 

of inducing cardiac toxicity. In his paper, Chuang-Stein used the 

moment methods of Kleinman [2] for estimating the parameters 

𝜇 and 𝜃. In this paper, we use maximum likelihood of beta-

binomial distribution for computing 𝛼 and 𝛽 directly, then we 

estimate 𝜇 and 𝜃, by which the mean, variance, and covariance 

for the data can be compute easily.  In Table (1) we put the cancer 

data which is the responding of the patients for the breast cancer 

with hormone medication of 20 different samples. 
 

Table 1: Cases of Hormone Medication of 20 Different Samples Breast 

Cancer which are taken in Hiwa Hospital for Cancer Treatment in 

Sulaymaniyah Province. 

Studies 
Sample sizes  

𝑛𝑖 

Number of 

Patients with 

Hormone 

Treatment 𝑥𝑖 

Proportion of 

Hormone 

Treatment 

𝑝𝑖 =
𝑥𝑖

𝑛𝑖

 

1 21 6 28.57 % 

2 23 6 26 % 

3 19 6 31.57 % 

4 20 2 10 % 

5 15 3 50 % 

6 19 9 47% 

7 22 8 36% 

8 31 11 35% 

9 50 15 30% 

10 120 31 25.8% 

11 180 18 10% 

12 60 16 26.67% 

13 200 66 33% 

14 70 18 25.7% 

15 230 65 28% 

16 260 40 15% 

17 300 30 10% 

18 275 27 9.8% 

19 245 24 9.7% 

20 40 11 27.5% 

  

Table (3) contains all results by using different methods to 

evaluate overdispersion. As explained in the former section, 𝛾 =

0.0194 is the clear sign of existing overdispersion problem. As it 

is significantly larger than zero, in this case where (𝑝 < 0.05), 

confirming the existence of overdispersion. The value of 

Tarone’s 𝑍 = −40.2322 statistics; fall in the reject region 

according to the tabulated 𝑍𝛼

2
= 1.960. This result indicates that 

beta- binomial has well-fitting than binomial model. After using 

the beta- binomial model in Table (2), the summary event rates 

are �̂� =1.3033% with a predicted value of standard error 

0.01563%. The �̂� is estimated to be 0.0198 (Table 3), which 

results an α estimation of 2.99487318 and an 𝛽 estimate of 

47.55704330. Once these parameters are predicted, Equation (3) 

can be used of beta- binomial model, as a prediction equation for 

observing new patients and new sample sizes with the probability 

of 0.05%. 

Table 2: Prediction of Proportion Rate 

Methods Estimate 
Standard 

Error 

Lower CI 

95% 

Upper CI 

95% 

Simple 

Binomial 
4.12% 0.390% 3.374% 4.833% 

Beta- 

Binomial 
1.3033% 0.01563% 0.86% 1.742% 

 

Table 3: Estimated Parameters of the Beta-Binomial Distribution 

Alpha 2.99487318 

Beta 47.55704330 

Mean 0.0592 

Theta 0.0198 

Gamma 0.0194 

Variance 0.0227 

Tarone’s Z -40.2322 

3. Result and Discussion: 

In an example regarding the effect of hormone usage in 

identification in females breast cancer, we ensured 20 

investigational testers, with 𝑝𝑖   rates varying from 9.7% to 50 %. 

When beta-binomial model is used, the event rates is varying 

from �̂� =1.3033%  a standard error 0.01563% are obtained, also 

beta-binomial model has the values of 𝛼 = 2.99487318 and 𝛽 =
47.55704330, the event rate of the binomial model is 4.12% with 

a standard error of 0.390%, but beta-binomial model can provide 

a robust estimate for events from heterogeneous binomial studies. 

Since the important parameters 𝛼 and 𝛽 can be estimated and 

there are 𝑘 different sample sizes 𝑛1, 𝑛2, … , 𝑛𝑘 with 𝑘 different 

numbers 𝑥1, 𝑥2, … , 𝑥𝑘. The best convergence between the two-

distribution binomial and beta-binomial can be determined using 

these different samples by substituting the values of 𝛼, 𝛽and 

different 𝑛𝑖 into a beta-binomial probability function (3) as shown 

in Figure 1 and Figure 2.  

The results showed that 3% of the breast cancer is due to the 

effect of the hormones. Furthermore, 97% of breast cancer could 
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be due to family history, genetics, obesity, age, menstruation, 

residence, smoking, alcohol, etc. 

After looking briefly at the binomial, beta, and beta- binomial 

distributions with their properties and the relation between them, 

how they act when their parameters are changed.   This 

distribution has been tested for different sample size (n), in the 

case of overdispersion indicate that: 

1- ML estimates of the performance in moderate and small 

samples indicate that the estimates have high efficiency relative 

to exact binomial and resulting inference procedures usually 

adequate for practical application.  

2- Total counts of identically independent distributed (i.i.d.) 

binary variables (equivalently, sums of i.i.d. binary variables 

coded as 1 or 0) follow a binomial distribution, and a model of 

zero-inflated regression is useful when there are a high proportion 

of zero counts in the data. 

3- Beta distribution has an essential application when dealing 

with binary outcomes because it assigns positive probability for 

the values no more than 0 and 1. Additionally, beta distribution 

provides tractable mathematical calculation for binary outcomes. 

For the values α> 1 and β > 1, the density of a beta distribution 

with (α and β) as parameters is unimodal. 

4- As an alternative model to beta-binomial in the case of 

overdispersion, the negative binomial regression can be used 

since the reality of this model is to analyze the over-dispersed 

data. 

4.Conclusions: 

The binomial distribution is known for its wide application to 

medical and biological data. It is always known that there is a 

change in the pathological response, which leads to instability of 

probability ratios, and hence the problem of overdispersion. 

Although there are alternative ways to solve this problem here, 

beta-binomial is considered as one of the alternative models. 

Also, to the extent of the importance and necessity of the issue, 

different types of cancer in the world, including breast cancer, it 

appeared that our society was not deprived of this deadly 

epidemic as it appeared in the estimation of event rates. We 

recommend. In the clinical study, an equal sample size can be 

considered revising “Maximum Likelihood” estimation in 

multiple different samples. 
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