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ABSTRACT 
      Clustering is one of the essential strategies in data analysis. In classical solutions, all features are assumed to contribute equally to 

the data clustering. Of course, some features are more important than others in real data sets. As a result, essential features will have a 

more significant impact on identifying optimal clusters than other features. In this article, a fuzzy clustering algorithm with local 

automatic weighting is presented. The proposed algorithm has many advantages such as: 1) the weights perform features locally, 

meaning that each cluster's weight is different from the rest.  2) calculating the distance between the samples using a non-euclidian 

similarity criterion to reduce the noise effect. 3) the weight of the features is obtained comparatively during the learning process. In this 

study, mathematical analyzes were done to obtain the clustering centers well-being and the features' weights. Experiments were done 

on the data set range to represent the progressive algorithm's efficiency compared to other proposed algorithms with global and local 

features. 

© 2021 Production by the University of Garmian. This is an open access article under the LICENSE  

https://creativecommons.org/licenses/by-nc/4.0/ 
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1. Introduction 

     Clustering is an unsupervised machine learning method and 

the primary technique in data mining, which seeks to discover the 

structure of data by finding similarities or differences between 

data points. Based on similarities, data points devide into 

different categories. These categories called clusters. Therefore, 

a cluster is acollection of input data, and some of these data are 

similar within and some are not to the data in the other clusters.[1] 

Clustering is the process of dividing a set of data sets x into 

subcategories or clusters, based on whether they are similar or 

not. One of the most critical problems with clustering algorithms 

is being sensitive to the primary points and getting stuck in the 

local optima. Researchers have used many metaheuristic 

algorithms in the last two decades to solve these problems and 

reach optimal global points. This study presents a combined 

method using fuzzy C-Means and an artificial immune system 

algorithm for data clustering. In this method, instead of randomly 

selecting the primary points from the data set, they are selected 

from the artificial immune system algorithm's best points. 

Experiments showed that by selecting these points as the primary 

points in the fuzzy C-Means algorithm, the C-Means algorithm 

converges in few iterations. The proposed algorithm has been 

tested on a standard data set. Comparing the results obtained with 

other methods shows that the proposed algorithm performs well 

[2]. Clustering aims to find similar clusters of objects among the 

input samples, but how can we say that one cluster is appropriate 

and the other is not? It can be shown that there are no absolute 

criteria for the best clustering, but it depends on the user's 

problem and opinion that he should decide whether the samples 

are correctly clustered or not. Clustering, the most critical 

question of unsupervised learning, deals with the data structure 

partition in a new area and is the basis for further learning. [3] 

The complete definition for clustering, however, has not agreed, 

and a classic one is described as follows: 

(1) I Instances, in different clusters, must be different as 

much as possible;[4] 

(2) Measurement for similarity must be precise and have 

practical meaning;[4] 

(3) nstances in the same cluster must be similar as much as 

possible[4]; 

In this study, we are using non-Euclidean distance as a parameter 

of similarity.To understand fuzzy clustering, it is necessary first 

to get acquainted with the concept of fuzzy sets and their 
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differences from classic sets. In classical collections, a reference 

collection member is either a collection (A) member or not a 

collection (A) member. In classical collections, the value of 

belonging to each collection is either 0 or 1. Now consider the 

collection of young and old humans. The question here is whether 

a person over the age of 25 is part of this collection. How about 

age 30 or 35? Anybody may have guessed; borderline certainty 

cannot be considered for young and old. The reason is, if 35 is 

supposed to be young, 36 can be young, as well as 37, 38, and so 

on. We are dealing with the concept of uncertainty here. We have 

used uncertainty many times in our daily lives, such as cold 

weather, hot water, expensive car, etc. All of the above are 

examples of fuzzy sets. The function of fuzzy sets affiliation is 

not two values (0 or 1) but can take any value between 0 and 1. 

[5] 

Each data item may belong to different clusters with different 

degrees of affiliations. Hence the classical clustering methods 

have been extended using the concepts of fuzzy set and rough set 

theory to handle such fuzzy clustering problems. Both theoretical 

and empirical studies in the literature have proved that the 

existing clustering methods are doing exceptionally well on the 

data of suitable types. In classical clustering, each input sample 

belongs to one and only one cluster and cannot be a member of 

two or more clusters. Sometimes, each sample is a member of a 

cluster, and any sample is not a member of two clusters; in other 

words, the clusters do not overlap. Now consider a situation 

where the similarity of a sample of two or more clusters is the 

same. In clustering, it must be decided to which cluster this 

sample belongs to. The main difference between classical 

clustering and fuzzy clustering is that a specimen can belong to 

more than one cluster. To unsrestand fuzzy clustering, consider 

Figure 1. [6] 

 

Figure 1: A schema of two local communities (A) and (B) with a 

standard node between them 

If input samples are, as shown above, it is clear that the data can 

be divided into two clusters, but the problem is that the data 

specified in the middle can be a member of both clusters, so it 

must be decided that the data between (A) ,and (B) clusters, 

belongs to which cluster, the (A) cluster, or the (B) cluster. 

However, in fuzzy clustering, the questioned data belongs to the 

(A) cluster or the (B) cluster, a float between 0,1. Another 

difference is the example of the input samples on the right side of 

Figure 1 can also be a member of the left cluster with a shallow 

degree of affiliation, which is also true for the examples on the 

left. In classical clustering, each input sample belongs to one and 

only one cluster and cannot be a member of two or more clusters. 

Each data item may belong to different clusters with different 

degrees of affiliations. Hence the classical clustering methods 

have been extended using fuzzy set and rough set theory to handle 

such fuzzy clustering problems. Both theoretical and empirical 

studies in the literature have proved that the existing clustering 

methods are doing exceptionally well on the data of suitable 

types.[7] 

Nowadays, data mining science-especially clustering-has found 

complete application in various sciences. From geological studies 

to space studies, they all use a kind of clustering technique. 

Various convergences and research in social sciences such as 

social crime, students' academic failure and fight against crimes 

in cyberspace security, cyberspace banking affairs for clustering 

and how to treat each customer, etc., are done Various 

conferences are offered. The followings are some of these articles 

and researches.[8] 

In this study, a new fuzzy clustering method with local weighting 

is presented. In this method, each of the weighting features is 

locally weighted. Thus, each feature weight's effect is different in 

various clusters. On the other hand, probability weighting is 

automatically performed through learning and clustering. 

Also, in this algorithm, inspired by the idea used in the paper [9], 

the non-euclidean distance is used. The advantage of using this 

distance measure is that they assign less weight to outliers and 

less impact clustering. To evaluate the proposed algorithm's 

efficiency, we used different methods performed on five UCI data 

warehouses. The proposed algorithm is compared with the fuzzy 

c - means algorithm with global automatic weighting ,and hard 

thresholding with local automatic weighting. The obtained results 

showed high efficiency of the proposed algorithm in compare to 

the other algorithms. 

The other parts of the paper are organized, as described in the 

second section of the necessary fuzzy c-means algorithm details. 

in the third second, the proposed algorithm is introduced, and the 

fourth second includes the results of the proposed algorithm, and 

finally, we will discuss what we can do in the future in the next 

section. 

 2. Basic Fuzzy C-means 

In this section, we briefly explain the basic fuzzy C-means 

algorithm [10]. The objective function of this algorithm is defined 

In the following equation: 

J =  ∑ ∑ μij
mC

j=1
N
i=0  d2 (xi − vj)                                                               (1) 

The µij determines the degree to which the i-th sample belongs to 

the center of the cluster j, and m determines the fuzzy degree. 

Here  d2 (xi − vj) is the non-Euclidean distance equal to 

  (xi − vj)2. As xi is the i-th sample and vj is the center of the j-

th cluster. For this objective function, there are constraints 0 <
∑ μij
N
i=1 < N and μijϵ[0 − 1] The values of the variables i  and j 

are in the range of 1 ≤ i ≤ N and 1 ≤ j ≤ C so on, respectively, 

change. [10]. 

Based on the objective function introduced in equation (1), 

equations for improving the centers and functions of the 

affiliation will be as follows: [10]. 

μij = 1 ∑ (
d2(xi−vj)

d2(xi−vl)
)

1

(m−1)C
l=1⁄                                                                       (2) 
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vj =
(∑ μij

mxi
N
i=1 )

∑ μij
mN

i=1
⁄                                                                       (3) 

3. Proposed algorithms 

The proposed local weighting fuzzy C-means clustering 

algorithm (LWFCM) is formulated and then explained in a 

psuedu-code form with full details. In the following, the proof of 

convergence and its computational complexity will be explained. 

3. 1 Formulation of the proposed algorithm 

Clustering requires a need for an objective function is set 

according to which parameters of the Clustering algorithm are 

set. One of the most famous functions in this field is the sum of 

in-cluster distances. On the other hand, in many literature works, 

the Euclidean similarity measure is used to compute the objective 

function, but this criterion is highly sensitive to noise. In these 

metrics, all features are considered equal to the same weight. 

In the proposed algorithm, a new objective function using a non-

euclidean similarity metric is presented in [8]. Also, in this 

objective function, a sample's attachment rate to a cluster is a float 

between 0 and 1;  for any features in each cluster, the specific 

weight of feature is considered. The objective function of the 

proposed algorithm is as follows: 

𝐽 = ∑ ∑ ∑ 𝜇𝑖𝑗
𝑚𝑀

𝑘01
𝐶
𝑗=1

𝑁
𝑖=1 𝑤𝑗𝑘

𝛽
𝑑2(𝑥𝑖𝑘 − 𝑣𝑗𝑘)                                            (4) 

Here µij is the i-th sample's attachment rate to the center of the j-

th cluster, The weight of the k-th feature in the j-th cluster is wjk, 

And d2(xik-vjk) is a non-Euclidean distance type. It is often 

defined as 1-exp(-ϒk(xik-vjk)2)  [8] For this objective function, the 

constraints are also  0 < ∑ 𝜇𝑖𝑗
𝑁
𝑖=1 < 𝑁 and 𝜇𝑖𝑗𝜖[0 − 1] , 

∑ 𝜇𝑖𝑗
𝐶
𝑗=1 = 1, ∑ 𝑤𝑗𝑘

𝑀
𝑘=1 = 1 that the values of the variables ii, j, 

and k are changing in the range of 1 ≤ 𝑖 ≤ 𝑁 , 1 ≤ 𝑗 ≤ 𝐶 and 

1 ≤ 𝑘 ≤ 𝑀 respectively. 

Here C is the number of clusters, and M is the number of features. 

Due to the constraints mentioned above, the Lagrangian equation 

of the objective function of the proposed algorithm can be written 

as follows: 

𝐽 = ∑ ∑ ∑ 𝜇𝑖𝑗
𝑚𝑀

𝑘01
𝐶
𝑗=1

𝑁
𝑖=1 𝑤𝑗𝑘

𝛽
𝑑2(𝑥𝑖𝑘 − 𝑣𝑗𝑘)-λ[∑ μij

c

j=1
− 1] −

𝛼(∑𝑤𝑖𝑗 − 1)                                                                               (5) 

λ and 𝛼  are the parameters of the Lagrange equation. 

By solving the above Lagrangian equation, according to 

KKT(Karush-Kuhn-Tucker) conditions, the following update 

formulas for µij, vjk, and wjk Are obtained. In fact, by deriving 

from the function of the above objective concerning µij, vjk, and 

wjk and equating zero with the product of the derivative and 

solving the equation, the following formulas are obtained: 

µ𝑖𝑗 = 1 ∑ (
∑ 𝑤𝑗𝑘

𝛽
𝑑2(𝑥𝑖𝑘−𝑣𝑗𝑘)

𝑀
𝑘=1

∑ 𝑤𝑙𝑘
𝛽
𝑑2(𝑥𝑖𝑘−𝑣𝑙𝑘)

𝑀
𝑘=1

)1/(𝑚−1)𝐶
𝑙=1⁄                                             (6) 

𝑣𝑗𝑘 =
∑ 𝜇𝑖𝑗

𝑚exp (−𝛾𝑘(𝑥𝑖𝑘 − 𝑣𝑗𝑘)
2)𝑥𝑖𝑘

𝑁
𝑖=1

∑ 𝜇𝑖𝑗
𝑚exp (−𝛾𝑘(𝑥𝑖𝑘 − 𝑣𝑗𝑘)

2)𝑁
𝑖=1

⁄        (7) 

 

𝑤𝑗𝑘 =

{
 
 

 
 

1

𝑚−1
   𝑖𝑓 𝐷𝑗𝑘 = 0,𝑚𝑘 = |{𝑙: 𝐷𝑗𝑙 = 0}|  

0   𝑖𝑓 𝐷𝑗𝑘 ≠ 0, 𝑏𝑢𝑡 ∃𝑙 𝑠. 𝑡. 𝐷𝑗𝑙 = 0 
1

∑ (
𝐷𝑗𝑘

𝐷𝑗𝑙
⁄ )1/(𝛽−1)𝑀

𝑙=1

   𝑖𝑓 𝐷𝑗𝑙 ≠ 0
                               (8) 

Djk The sum of the distances within the cluster is according to 

the k-th attribute, and the non-euclidian distance, which is defined 

as follows: 

𝐷𝑗𝑘 = ∑ 𝜇𝑖𝑗
𝑚𝑁

𝑖=1 (1 − exp(−ϒk(xik − vjk)
2))                                     (9) 

The steps of the proposed algorithm are summarized in pseudo-

code 1. It should be noted that the elements of the weight matrix 

are the same in the initial set-up stage, so that wjk =1/k, where k 

= 1,…, M, and M, the number of features in the data set. Then, 

the primary centers are randomly selected from the samples 

pseudo-code.1 Proposed clustering algorithm is the number of 

samples and M is the number of features, and xik is the k-th 

features of the i-th sample. 

Output: attachment matrix µ, the matrix of centers V, and weight 

matrix W. 

Step 1: Primary value of the number of clusters C, degree of 

phasing m, the threshold value in the condition of stopping ε, T, 

the number of iterations, weight matrix W, and V, the centers 

matrix. 

Step 2: Update the µ attribute matrix from the formula) (6) 

Step 3: Update the V Center matrix from the formula (7) 

Step: 4 Update the W weights matrix from the formula (8) 

Step 5: If the condition|𝑣𝑖
𝑡 − 𝑣𝑗

𝑡−1| < ε is not met as the vjt center 

of cluster j-th is in t repeating t or the number of iterations is less 

than T, Go to step2. Otherwise, go to step 6. 

Step: 6 final center V matrix, attachment matrix µ, and features 

weight matrix.  

3. 2 Computational complexity 

Given the pseudo-code of the proposed algorithm, it can be seen 

that the computational complexity of the second stage is equal to 

NMC2, which is N the number of samples, C is the number of 

clusters, and Is the number of features. In the second step, we 

encounter two sets of nests, the first of which is repeated twice 

and the second twice, and this operation is performed for each 

sample in each cluster. On the one hand, the computational 

complexity of the third stage is equal to NMC because we are 

dealing with a sum that is repeated N times, and on the other hand, 

this operation is for each feature in each cluster. 

As a result, the computational complexity of the whole is equal 

to T(C2+NMC)=TNCM(C+1), which is almost the same as 

O(TNC2M), where T is the number of repetitions of the 

algorithm. 

3. 3 Proof of convergence 

In this section, the proof of proposed algorithm convergence is 

explained. Our purpose is proving the relation (5) function is 
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ultimately minimized or, in other words, converged, according to 

the formulas obtained to improve its components, given that the 

objective function is the sum of the distances within the pleasures, 

the smaller the value, the better. 

Theorem 1. Assuming that the center matrix and the weight 

matrix are constant, the affiliation matrix is the local least related 

relation (5). The correlation is defined only if for any element (6) 

because the objective function has a direct relationship with the 

affiliation matrix. 

Proof 1. As the relationship (6)'s µij from deriving from the 

relationship (5) to µij and equal to zero is obtained; therefore, it is 

either minimal or maximum. The relationship (5) derives from µij 

And shows that the second partial derivative is positive (5). It can 

be proved that µij Is defined by relation(6) is a local minimum of 

relation(5). Therefore, in the following, we take the second 

derivative from the relation (5.). 

The result of this derivative will be as follows: 

∑𝑚(𝑚 − 1)

𝑀

𝑘=1

𝜇𝑖𝑗
𝑚−2𝑤𝑗𝑘

𝛽
𝑑2(𝑥𝑖𝑗 − 𝑣𝑗𝑘) 

                                                                  (10) 

Since a, b, m> 1 can be shown ∑ 𝑚(𝑚 −𝑀
𝑘=1

1) 𝜇𝑖𝑗
𝑚−2𝑤𝑗𝑘

𝛽
𝑑2(𝑥𝑖𝑗 − 𝑣𝑗𝑘) As a result of the relation (6) is a local 

minimum of relation (5). 

Theorem 2. Assume that the affiliation matrix µ and the matrix 

of weights W are constant. W centers' matrix is then defined as a 

local minimum of the relation (5) if the correlation defines vjk (7). 

Proof 2. Proof 2 is the same as proof 1. It is sufficient to show 

that the second derivative of the relation (5) is positive for vjk 

because vjk derives from the relation (5) concerning vjk and 

placing it equal to zero. Relation (5) is a positive expression for 

As a result of the relationship (7) is also a local minimum of the 

relationship (5). 

Theorem 3. Assume that the affiliation matrix µ and the matrix 

of centers V are constant. The weight matrix W is defined as a 

local minimum of the relation (5) if the relation (8) defines wjk. 

Proof 3. Proof of Theorem 3 is similar to Proof 1 and 2. That is, 

it is sufficient to show that the second derivative of the relation 

(5) is positive for wjk because wjk is a deriving from the relation 

(5) concerning wjk and placing it equal to zero. The second 

derivation of relation (5) is as same as  wjk compared to 

∑ 𝜇𝑖𝑗
𝑚−2

𝑁

𝑖=1
𝛽𝑤𝑗𝑘

𝛽−1
𝑑2(𝑥𝑖𝑗 − 𝑣𝑗𝑘) (which is a positive 

statement). As a result, the relationship is (8)  is also a local 

minimum of the relationship (5). 

Since the goal is minimizing the relationship (5), according to 

theorems 1-3, and the formulas for improving the center matrix v 

the relationship (6); and the weight matrix W, the relationship (7) 

and the affiliation matrix m, the relationship (8), we can be 

assured the objective function ultimately reaches its minimum 

value or converges. 

4. Results and Discussions 

In this section, the performance of the proposed algorithm 

(PROPOSED ALGO) is investigated, and its results are 

combined with C-Means fuzzy clustering algorithms with global 

weighting  [9] (RFWFCM and C-Means hard drive with local 

buffer)  [7]. The evaluation of the proposed algorithm in 

comparison with the two methods RFWFCM and RLFWHCM on 

five real data sets including Breast-cancer, Bupa, Glass, Wine, 

and Iris, from the UCI data warehouse. These data sets are 

summarized in Table 1. The standard parameters in all 

algorithms, including the threshold value ε and the number of T 

iterations, are set to ε = 10-5 and T = 200. 

Table 1: Five real datasets from UCI data wearhouse used in 

experiments 

Dataset 

name 

Number of 

samples 

number of 

dimensions 

Number of 

classes 

Iris 150 4 3 

Wine 178 13 3 

Glass 214 10 6 

Bupa 345 6 2 

Breast 683 10 2 

Also, the parameter m in the RFWFCM algorithm and the 

proposed algorithm are set as m = 2. The number of clusters per 

data set is the same as the number of classes in the data set Was 

used. the objective function's value and the error rate is used to 

measure the efficiency of the algorithms. 

Table 2 shows the mean error rate and execution time and the 

proposed algorithm's objective function after 200 iterations on the 

five data sets used for β= 2. According to Table 2, it can be seen 

that The proposed algorithm's time is longer than the RLWHCM 

algorithm for all data sets. On the other hand, the proposed 

algorithm's execution time is even longer than the execution time 

of RFWFCM. 

However, for all data sets used, the objective function and the 

proposed algorithm's error rate are less than the objective function 

and the error rate of both other algorithms. Respectively, this is a 

strong reason for increasing its efficiency compared to the other 

two algorithms after running on real data sets. 

Table 3 shows the mean error rate of RLWHCM, RFWFCM, and 

PROPOSED ALGO algorithms after 200 iterations on five data 

sets used for different values of β, and Table 4 averages the 

objective function of the repetition algorithm over 200 iterations 

after PROPOSED ALGO and RFWFCM, 

The five sets of data used for different values of β  represent. 

In this paper, the parameter is important and affects the efficiency 

of algorithms. Here, considering the correct values β between -6 

and +6 for the parameter ߚ its effect on the algorithms' 

performance is studied. For this purpose, ten series of primary 

centers are produced for each data set, and each algorithm is 

executed ten times on each data set and each time during 200 

iterations. The algorithms' average objective function is shown in 

Table 3, and the average error rate is shown in Table 3. In Figure 

2, the vertical axis of the Error rate and the horizontal axis is the 

value of the parameter.
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Table 2: Execution time, and objective function and average error rate of RLWHCM, RFWFCM, and PROPOSED ALGO algorithms 

dataset method 

Time (MS) 
Objective 

function 
Error rate Time (MS) 

Objective 

function 

average average variance average average 

Iris RFWFCM 8242.6 2.59 0.44 12.153 4.33 

RLWHCM 199 3.21 0.007 6.93 0.68 

PROPOSED 

ALGO 

848269.1 2.36 0.003 5.66 0.001 

Wine RFWFCM 12116 1.82 0.0001 27.76 0.0001 

RLWHCM 456.7 0.1 0.3 27.92 1.22 

PROPOSED 

ALGO 

12130.1 0.001 0.003 27.58 0.002 

Glass RFWFCM 13256.6 1.82 0.82 0.05 2.63 

RLWHCM 1317.9 3.11 0.1 0.11 1.04 

PROPOSED 

ALGO 

13298.5 0.0003 0.001 0.006 0.42 

Bupa RFWFCM 12977.3 0.05 8.67 0.0002 3.73 

RLWHCM 679.4 0.11 11.98 0.01 0.74 

PROPOSED 

ALGO 

12985.1 0.006 8.62 0.0001 4.4 

Breast RFWFCM 50702.7 0.0002 8.02 0.19 3.09 

RLWHCM 1442.7 0.01 5.17 1.24 3.46 

PROPOSED 

ALGO 

50707.2 0.0001 4.41 0.02 2.03 

Table 3 shows that the value of the proposed algorithm's target 

function for all data sets used after 200 iterations for different 

values of β is less than the other two algorithms. Nevertheless, 

Table 4 shows that the proposed algorithm error rate for all Data 

sets for all different values of β are not less than the error rate of 

the other two algorithms. In fact, for the glass data set for β = 4, 

for the Bupa for β = -6, and the breast for β = -2, the error rate of 

the proposed algorithm is not less than the error rate of the other 

two algorithms. 

 

Table 3: The average objective function of RLWHCM, RFWFCM, and PROPOSED ALGO after 200 iterations on five real data sets used for different 

values β 

  ɓ 

Data set method -6 -4 -2 2 4 6 

Iris 

RFWFCM 213701 .3 13459 .04 854 .75 2 .59 0 .18 0 .0119 

RLWHCM 296343 .3 18891 .69 1289 .76 3 .21 0 .24 0 .0167 

PROPOSED 

ALGO 

208098 .6 13136 .62 838 .59 2 .36 0 .17 0 .0116 

Wine 

RFWFCM 150* 107 8882560 52569 .60 1 .82 0 .0108 0 .0001 

RLWHCM 279* 107 16581100 99147 .44 3 .11 0 .0194 0 .0001 

PROPOSED 

ALGO 

148* 107 8759858 51983 .53 1 .75 0 .0106 0 .0001 

Glass 

RFWFCM 95255856 425330 11858 .64 8 .67 0 .25 0 .0069 

RLWHCM NaN NaN NaN 0 .1 0.002 0.0003 

PROPOSED 

ALGO 

88545798 896384 9188 .76 0 .001 0 0 

Bupa 

RFWFCM 15286659 425330 11858.68 8.67 0.25 0.0069 

RLWHCM 25234338 705509 19854.07 11.98 0.38 0.0109 

PROPOSED 

ALGO 

15141407 421295 11748.20 8.62 0.24 0.0068 

Breast 

RFWFCM 858* 106 8600380 86588 .09 8 .02 0 .08 0 .0008 

RLWHCM 1270 * 106 12241971 124179 .57 5.17 0.15 0.0017 

PROPOSED 

ALGO 

806* 106 8107069 82503 .85  4.41 0.07 0.0005 
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Table 4: The mean error rate of RLWHCM, RFWFCM, and PROPOSED ALGO after 200 iterations on five real data sets used for different values β 

  ɓ 

Data set method -6 -4 -2 2 4 6 

Iris 

RFWFCM 13.13 13.7 13.7 12.53 12.53 12.53 

RLWHCM 7.8 7.86 12.66 6.93 7.93 11.96 

PROPOSED 

ALGO 

6.73 6.73 6.73 5.66 6.93 6.93 

Wine 

RFWFCM 27.8 27.89 27.80 27.76 27.80 27.80 

RLWHCM 28.31 28.10 28.14 27.92 27.48 27.75 

PROPOSED 

ALGO 

27.07 27.12 27.19 27.58 26.79 26.62 

Glass 

RFWFCM 23.29 24.19 22.53 30.70 27.71 22.71 

RLWHCM 23.29 27.71 30.70 22.53 24.49 23.19 

PROPOSED 

ALGO 

22.93 29.12 21.47 23.31 24.38 30.33 

Bupa 

RFWFCM 32.98 32.13 20.23 22.18 23.10 18.64 

RLWHCM 33.36 33.33 32.32 33.73 33.82 32.98 

PROPOSED 

ALGO 

32.86 32.86 33.37 33.63 34.38 33.36 

Breast 

RFWFCM 34.04 34.02 30.34 32.25 33.44 32.86 

RLWHCM 37.81 37.81 37.42 33.79 31.12 34.04 

PROPOSED 

ALGO 

33.49 33.49 31.78 32.38 31.82 32.88 

 

 

As a result, the proposed algorithm is not more efficient than the 

other two algorithms only when it is small. From Table 3 and 

Table 4, and Figure 2, it can be shown that the proposed algorithm 

is better for most different values of the parameter β than other 

compared algorithms. Besides, Figure 2 can quickly determine 

the appropriate β  parameter value for each data set. For example, 

the appropriate value of the parameter β for the proposed 

algorithm is equivalent to the iris data set, 2 for the balanced wine 

data set, 6 for the equivalent glass data set, 6 for the Bupa data 

set, 2 for the breast-cancer data set, 2.

 
Figure 2: The average rate of error charts of "Robust local feature weighting hard c-means clustering algorithm" (RLWHCM), "Robust local feature 

weighting hard c-means clustering algorithm"(RFWFCM), and RLFWFC on real datasets after 200 iterations on different levels: a) iris, b) wine, c) 

glass, d) Bupa 
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5. Conclusion 

So far, many kinds of research have been done to design a 

clustering algorithm with multi-stage clustering. However, in 

none of those, both fuzziness and local weighting are not applied 

at the same time, in addition to the euclidean similarity measure 

using, which is very sensitive to noise. In this paper, the proposed 

algorithm is proposed defining a new objective function and then 

defining the updating rules. In this paper, we prove the validity 

and the computational complexity of the proposed algorithm. 

The results showed that the proposed algorithm's performance is 

more significant than the objective function, and the error rate 

decreased in the same algorithms. One of the tasks that can be 

done to improve the proposed algorithm's efficiency is the 

automatic determination of the number of partitions. A cluster-

based classifier can be used—the next work to be done in 

developing the proposed algorithm to run over a nominal attribute 

set. 
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