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 ABSTRACT 

This paper aims to use some nonstandard concepts to find a nonstandard analytic and non-analytic 

infinitely close solution of the first-order ordinary differential equation in the monad of its singularity, 

where the differential coefficients are either infinitesimal, unlimited or have basic differential form. The 

obtained nonstandard solutions are more precise and compatible than the conventional ones. We named 

such a non-analytic infinitely close solution to the singularity by shadow solution. These cases of solutions 

are sometimes impossible to obtain by conventional methods. 

 

KEYWORDS: Nonstandard Analysis, Ordinary Differential Equation, S-Continuity, Singularity, 
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1 INTRODUCTION 

A. Robinson, who made a foundation of nonstandard analysis, was the first mathematician who 

formulates the principle of “infinitely small” in a logical manner by enlarging the set of real numbers 

to include infinitesimals and infinitely large (unlimited) quantities [1, 2]. Robinson’s extension of 

real numbers provides a rigorous foundation for using infinitesimal and infinitely large quantities in 

analysis. There are several differential approaches to extending the formal analysis to the nonstandard. 

One of the famous approaches is the Internal Set Theory (IST) given by E. Nelson [3], which is 

assembled on the axiomatic set theory of ZFC. Any set illustrated in ZFC will be standard; moreover, 

we recognize that in the ZFC, any mathematical object: a function, an actual number… etc., will be 

a set. Also, every set, or we can say the formula in the IST, is said to be internal; sometimes it does 

not implicate the new predicate “standard” (that is, in case it will be a formula in the ZFC), else it 
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said to be external [3, 4]. In this work, with the notation, we represent the appropriate extension of 

the traditional set of the real numbers R. Throughout this paper, the following definitions and 

theorems from the nonstandard analysis are considered: 

Every element or set represented in a classical mathematics will be standard [5]. We say that x is a 

limited real number if |x| ≤ r for some positive standard real numbers r, or it is called unlimited 

whenever |x| > r for all positive standard real numbers r, also it is called an infinitesimal whenever 

|x| < r for all positive standard real numbers r, the set of every infinitesimal will be represented by 

m(0). The only standard infinitesimal will be Zero [6]. If an infinitesimal x will be nonzero then 
1

x
 

will become unlimited. 

 

Figure 1: Structure of extended real numbers, where ϵ is an infinitesimal [7]. 

 

Let x and y be any two real numbers, then we say that x and y are infinitely close if and only if x − y 

is infinitesimal. Also it will be denoted by the expression x ≅ y [8]. The set of every real number which is 

infinitely close to the real number x is said to be the monad of x also it will be represented by m(x). A ζ −

Microhal(x) = {y ∶  y − x < ζn, ∀stn }, where ζ is an infinitesimal [1].  

 

 

Figure 2: The ζ − microhal(0), where ζ, ϵ, and ς are infinitesimals. 
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For a limited number x in ℝ, will be infinitely close to a unique standard real number, and that unique 

number will say to be the shadow of x  denoted by st(x)  or x 
o  [3]. Any real number which is not 

infinitesimal and it is limited will be called appreciable [9]. For more details please see the references [10, 

11]. A function f: A → B is said to be the internal function whenever A is an internal set, continuous at xo 

if and only if f and xo are standards and f(x) ≅ f(xo) for all x ≅ xo, s-continuous if and only if f(x) ≅ f(xo) 

for all x ≅ xo [6, 9]. 

Let (ℝn, d)  be any standard metric space in ℝn.  Then for any limited real numbers x =

(x1, x2, … , xn)  and y = (y1, y2, … , yn)  for n ∈ ℕ , we define m(x)  to mean the monad of the point 

(x1, x2, … , xn)  in ℝn , and x  is infinitely close to y  whenever xi ≅ yi for all i =  1,2,… , n . By 

IntBnd(x1, x2, … , xn) , we denoted to the interior of the bounded set and it is defined as 

IntBnd(x1, x2, … , xn) =  {(y1, y2, … , yn) ∈ Xn ∶  |yi| ≤ xi  for all i =  1,2,… , n}  [7]. Consider the 

following general form of first order differential equation: 

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦), with initial condition  y(0) = 0.                                 (1) 

Suppose that f(x, y) and 
∂f

∂y
  are S-continuous functions defined on IntBnd(γ, κ), where γ and κ are 

positive real infinitesimals. Then there exists x ∈ γ −𝑴𝒊𝒄𝒓𝒐𝒉𝒂𝒍(0) so that y = ψ(x) is a unique analytic 

solution to (1) [7]. For more details about nonstandard analysis see [4, 5, 6, 9, 12, 13]. 

 

Theorem 1[14]: The set X is a standard finite set if and only if every element of a set X is standard. 

In the first order differential equation M(x, y)dx + N(x, y)dy = 0, if we have M(x0, y0) = 0 also 

N(x0, y0) = 0, then (x0, y0) is said to be a singular point for this differential equation [15]. A point x0 is 

said to be a singular point whenever a function f is not analytic at this point while it is analytic at some 

point in every neighbourhood of x0, and sometimes it’s called a singularity of f. We mean that if a point 

x = ϑ will be a singular point to the solution y = f(x) from the above DE then ϑ will become accumulation 

point for the set D that is D = {x ∈ ℂ: 0 < |x − ϑ| <  r, for some r ∈ ℝ+} wherever y = f(x) will have a 

Taylor series about the point x0 ∈ D [16]. A function f in the open set Ω is said to be meromorphic while 

we have a sequence of points {x0, x1, x2, … } which does not have accumulation points in Ω, also this 

function f will be analytic in Ω − {x0, x1, x2, … }, moreover f has poles at {x0, x1, x2, … } [17]. A PDE is 

called  quasilinear while it’s linear w.r. to every highest order derivative for the unknown function. 



 

10-145 

 

Figure 3: The gamma function is meromorphic in the complex plane [18]. 

 

In this investigation, we try to find the asymptotic behaviour of the solutions of the differential 

equation near singular points, which we call the shadow solution of the differential equation. Focusing on 

the properties of infinitesimal parameters related to such singular points in its monad leads to some 

unfamiliar behaviours and features of the singularity. Next, we give some nonstandard studies for ordinary 

differential equation (1) near a singularity. 

 

Papers should clearly describe the background of the subject, the authors work, including the methods 

used, results and concluding discussion on the importance of the work. Papers are to be prepared in English 

and SI units must be used. Technical terms should be explained unless they may be considered to be known 

to the conference community. The references should be numbered [1], or [2, 3], or [1, 4-6].  

 

2 NONSTANDARD SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATION 

Consider the following general form of the first order ordinary differential equations  

𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦),                                                                         (2) 

where 𝑥, 𝑦 ∈ ℝ. Existence and uniqueness theorems [7] assert that there exists a unique analytic 

solution 𝑦𝑜 = 𝑓(𝑥𝑜) for 𝑥 = 𝑥0  when f(x, y) is analytic on  𝐈𝐧𝐭𝐁𝐧𝐝(|𝑥0| + 𝜉 , |𝑦0| + 𝛿) where 𝜉  and 𝛿 

are positive real infinitesimals [9]. Next we discuss the analyticity of the solution of equation (2). 

 



 

10-146 

2.1. WHERE ONE OF THE DIFFERENTIAL COEFFICIENTS IS UNLIMITED 

Theorem 2.1: Consider the differential equation (2) and assume that 𝑓(𝑥, 𝑦) =
1 

𝑃(𝑥,𝑦)
 , where 𝑃(𝑥, 𝑦) is a 

polynomial in 𝑥 and 𝑦 such that 

𝑃(𝑥, 𝑦) = 𝑎1,0𝑥 + 𝑎0,1𝑦 + 𝑎1,1𝑥𝑦 + 𝑎2,0𝑥
2 +⋯+ 𝑎𝜔1,𝜔2𝑥

𝜔1𝑦𝜔2 , 

where 𝑎𝑖,𝑗 are limited real numbers for each 𝑖, 𝑗 ≥ 0 and 𝜔1 & 𝜔2 are unlimited real numbers with  
1

𝜔𝑝
∉

𝜁 −𝐌𝐢𝐜𝐫𝐨𝐦(0), where 𝜁 is an infinitesimal, for 𝑝 = 1,2. Then we have the following results: 

1. If (𝑥0, 𝑦0) = (0,0), then the function 𝑓(𝑥, 𝑦) is not analytic in m(𝑥0, 𝑦0). That is 𝑓(𝑥, 𝑦) is 

unlimited for all (𝑥, 𝑦) ∈ 𝑚(𝑥0 , 𝑦0).  

2. 
1

𝑓(𝑥,𝑦)
 is analytic and 𝑃(𝑥, 𝑦) is an infinitesimal for all (𝑥, 𝑦) ∈ 𝑚(𝑥0 , 𝑦0).  

Proof: Consider the differential equation 

 
𝑑𝑥

𝑑𝑦
= 𝑔(𝑥, 𝑦) = 𝑎0𝑥 + 𝑏0𝑦,  

both functions 𝑔(𝑥, 𝑦) and 
𝜕𝑔

𝜕𝑥
(𝑥, 𝑦) are defined for all 𝑦. The uniqueness theorem tells us that for each 𝑦0 

there exists a unique analytic solution 𝑥 described in 𝒎(𝑦0). Now, let   𝑧 = 𝑎0𝑥 + 𝑏0𝑦. Then 

𝑑𝑧

𝑑𝑦
= 𝑎0

𝑑𝑥

𝑑𝑦
 + 𝑏0 = 𝑎0 𝑧 + 𝑏0. 

Hence, ln(𝑎0 𝑧 + 𝑏0) = 𝑎0 𝑦 + 𝑎0𝑐, where c is an arbitrary constant. Therefore,  

 𝑥(𝑦) ≅ 𝜅 + 𝛾 𝑦 + 𝑐1∑
(𝑎0𝑦)

𝑛

𝑛!

𝜔

𝑛=2

, 

where 𝑐1 =
1

𝑎0
2 𝑒
𝑎0𝑐, 𝜅 = 𝑐1 −

𝑏0

𝑎0
2 , 𝛾 =  𝑐1 𝑎0 −

𝑏0

𝑎0
  and 𝜔 is unlimited with 

1

𝜔
∉ 𝜁 − Microm(0). For an 

infinitesimal y ,  we have x(y) ≅ κ  where a0  is appreciable, and if c1  is infinitely close to 
b0

a0
2 , then 

x(0) becomes an infinitesimal. In general, if  g(x, y) = ∑ ai,jx
iyj

ω1,ω2
i+j > 0     such that  

dx

dy
= ∑ ai,jx

iyj

ω1,ω2

i+j > 0

.                                                           (3) 

Then, by the existence and uniqueness theorem, the approximate solution of the differential equation (3) 

will be of the form  

x(y) =∑ciy
i

ω

i=1

,                                                             (4) 

which is zero for y = 0, and is infinitesimal for y ∈ ζ − Microhal(0). Otherwise, the solution is nonzero. 

By using some interpolating method, we can find an infinitely close inverse y as a function of x such that 
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y(x) =∑ĉix
i

ω

i=1

.                                                            (5) 

Thus equation (5) is a shadow solution for the differential equation (2) in m(0)  whenever x ∈ ζ −

Microhal(0) and for standard infinitesimal  x = 0, the differential equation (2) has no solution.■ 

 

2.2. WHERE THE DIFFERENTIAL COEFFICIENTS ARE EITHER INFINITESIMAL OR 

UNLIMITED 

Theorem 2.2: Consider the following differential form of (2) 

𝑥
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦),                                                                  (6) 

and  

 𝑓(𝑥, 𝑦) = 𝛼 𝑥 + 𝛽 𝑦 + ∑ 𝑎𝑖,𝑗𝑥
𝑖𝑦𝑗

𝜔1,𝜔2

𝑖+𝑗>2

, 

where ai,j are limited real numbers for each 𝑖, 𝑗 ≥ 0 and 𝜔1 & 𝜔2 are unlimited real numbers with 

1

𝜔1
,
1

𝜔2
∈ (ζ − Microhal(0))

c
, where ζ is an infinitesimal.  More than this where 𝑓(𝑥, 𝑦)  is analytic in 

𝒎(0,0) , is infinitesimal for (𝑥, 𝑦) ∈ 𝜁 − Microhal((0,0)) , with 𝜁  is an infinitesimal, and 
𝑓(𝑥,𝑦)

𝑥
 is 

meromorphic for (𝑥, 𝑦) is infinitesimal in ℂ2. Then we have the following cases: 

I. 𝛽 ∈ ℝ\{𝑚(𝑛): 𝑛 ∈ ℕ𝑠𝑡}. 

II. 𝛽 ∈ ℝ\{𝑚(𝑛): 𝑛 ∈ ℕ𝑠𝑡} and 𝛼 is an infinitesimal. 

III. 𝛼 and 𝛽 are infinitesimal. 

IV. 𝛽 ∈ {𝑚(𝑛): 𝑛 ∈ ℕ𝑠𝑡}. 

(a) 𝛽 = 1 and 𝛼 = 0. 

(b) 𝛽 = 1 and 𝛼 ≠ 0. 

(c) 𝛽 ∈ (𝑚(1) ∩ (𝜁 −𝑴𝒊𝒄𝒓𝒐𝒉𝒂𝒍(1)𝑐}. 

(d) 𝛽 ∈ 𝑚(𝑛) and 𝑛 is limited natural number. 

(e) 𝛽 is unlimited and 𝛼 is a limited. 

Proof: By hypothesis, we can rewrite  (6) as follows: 

  x
dy

dx
 − β y = α x + ∑ ai,jx

iyj
ω1,ω2
i+j≥2  .                                          (7) 

It is clear that (0,0) is a singular point of the differential equation (7). First, we try to show that the 

differential equation (7) has a shadow solution in the monad of its singularity (0,0), then we try to show 

whether (7) has a solution or not for all cases given in the hypothesis and to determine the type and behavior 
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of each existence solution. Let 
dz

dx
= g(x, z) be an equivalent differential equation to (7) such that g(x, z) is 

meromorphic where (x, z) is infinitely close to the origin of ℂ2 . We can write these two differential 

equations in the following form: 

dx

1
=

dy

f(x, y)
x

=
dz

g(x, z)
 . 

The quasilinear partial differential equation of the above form is: 

∂y

∂x
+  g(x, z)

∂y

∂z
=
f(x, y)

x
.                                                    (8) 

We claim that the shadow solution of the equation (8) in the monad of its singularity is as follows: 

y = ∑ c̃i,jx
izj

ω̃1,ω̃2

i+j≥1

,                                                           (9) 

where ω̃1 and ω̃2 are unlimited, and assume that g(x, y) is defined as: 

g(x, y) =
1

x
(α̂ x + β̂ y + ∑ âi,jx

iyj

ω̂1,ω̂2

i+j≥2

) . 

Then (8) can be written as follows: 

x
∂y

∂x
+ (α̂ x + β̂ z )

∂y

∂z
= α x + β y + ∑ ai,jx

iyj

ω1,ω2

i+j≥2

− ( ∑ âi,jx
iyj

ω̂1,ω̂2

i+j>2

)
∂y

∂z
.               (10) 

Now, putting (9) and their derivatives in (10) yields 

β̂c̃0,1 = βc̃0,1  ,  c̃1,0 + α̂c̃0,1 = α + β c̃1,0. 

Hence   (β̂ − β)c̃0,1 = 0. 

Then either  β̂ = β     or  c̃0,1 = 0.  

The coefficients (c̃i,j)i+j=k
 must satisfy the following system 

AkC̃k = Fk((c̃i,j)i+j<k
, ai,j, âi,j) , where  

Ak =

(

 
 
 
 

kβ̂ − β 0 ⋯ 0 0 ⋯ 0 0

kα̂ 1 + (k − 1)β̂ − β ⋯ 0 0 ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ (k − r + 1)α̂ r + (k − r)β̂ − β ⋯ 0 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ 0 0 ⋯ α̂ k − β)

 
 
 
 

, 
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 C̃k =

(

 
 
 

c̃0,k
c̃1,k−1
⋮

c̃r,k−r
⋮
c̃k,0 )

 
 
 

,  and   Fk =

(

 
 
 

F0,k
F1,k−1
⋮

Fr,k−r
⋮
Fk,0 )

 
 
 

  

For arbitrary nonzero c̃0,1 the matrix Ak is invertible if and only if β̂ = β, where β is not a standard 

natural number and β ∉ ℚ− (where ℚ− is the set of negative  rational numbers), for all k (k = 2,3,⋯ ). 

Therefore, the differential equation (7) is equivalent to the following differential equation: x
dz

dx
= βz. The 

power series (9) is an approximate solution (shadow solution) of the following quasilinear partial 

differential equation 

x
∂y

∂x
+ βz 

∂y

∂z
= αx + βy + ∑ ai,jx

iyj

ω1,ω2

i+j≥2

. 

Hence, we get y = ∑ c̃i,jx
i(xβ)

j
,

ω̃1,ω̃2
i+j≥1 which is the approximate solution (shadow solution) of the 

differential equation (7) at the monad of its singularity. Consequently, if we choose β such β ∉ ℚ−  ∪

ℕstwith c̃0,1 = 0, then ∑ c̃ix
iω̃1

i=1  is the approximate solution (shadow solution) of the differential equation 

(7). Note that xβ is infinitesimal whenever x is infinitesimal. Now, if β ∈ ℝ\ℕst, then the equation (7) has 

a unique analytical solution ϕ(x) such that ϕ(0) = 0. In case ϕ(0) ≅ 0 then by Corollary 2.3 in [19] we 

obtain that equation (7) has an approximation solution (shadow solution). Let the power series about the 

origin for y be given as follows 

 y = ∑ckx
k

ω

k=1

 ,                                                                        (11) 

be an approximate solution (shadow solution) of the differential equation (7), where ω is unlimited such 

that 
1

ω
∉ ζ − Microhal(0). Now we try to find the radius of the coefficients ci for real infinitesimal  x. 

Assume that ρ is the maximum radius of coefficientsci, then we have the following cases: 

1. If ρ is unlimited, then  

|𝑦| = |∑ 𝑐𝑘𝑥
𝑘

𝜔

𝑘=1

| ≤  ∑|𝑐𝑘| ⋅ |𝑥
𝑘|

𝜔

𝑘=1

 < 𝜔0, 

where 𝜔0 is unlimited greater than 𝜌. 

2. If 𝜌 is appreciable, then  

|𝑦| = |∑ 𝑐𝑘𝑥
𝑘

𝜔

𝑘=1

| ≤  ∑|𝑐𝑘| ⋅ |𝑥
𝑘|

𝜔

𝑘=1

≤ ∑𝜌 ⋅ |𝑥𝑘|

𝜔

𝑘=1

 =  
𝜌

1 − |𝑥|
≅ 𝜌. 

3. If 𝜌 is infinitesimal, then  
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|𝑦| ≤  ∑|𝑐𝑘| ⋅ |𝑥
𝑘|

𝜔

𝑘=1

≤ ∑𝜌 ⋅ |𝑥𝑘|

𝜔

𝑘=1

≲ 1 . 

 

Now, we are ready to find the shadow solution of the equation (7) in the monad of its singularity 

according to given cases of 𝛼 and 𝛽: 

 

I - If  𝛽 ∈ ℝ\{𝒎(𝑛): 𝑛 ∈ ℕ𝑠𝑡} 

Substituting (11) into (7) we obtain    

x ∑kckx
k−1

ω

k=1

− β ∑ckx
k

ω

k=1

 = αx + ∑ ai,jx
i (∑ckx

k

ω

k=1

)

j

.

ω1,ω2

i,j≥2

 

That is 

 ∑(k − β)ckx
k

ω

k=1

= αx + ∑ ai,jx
i (∑ckx

k

ω

k=1

)

jω1,ω2

i,j≥2

. 

Therefore, 

(1 − β)c1x + (2 − β)c2x
2 +⋯+ (ω − β)cωx

ω   

= αx + (a2,0 + a1,1c1 + a0,2c1
2)x2  

+ (2a0,2c1c2 + a3,0 + a1,2c1
2 + a1,1c2 + a0,3c1

3 + a2,1c1)x
3 

+ ⋯ + Pω(c1, c2,⋯ , cω−1) + ⋯      (12) 

Thus,  

(1 − β)c1 = α  

(2 − β)c2 = a2,0 + a1,1c1 + a0,2c1
2 

(3 − β)c3 =  2a0,2c1c2 + a3,0 + a1,2c1
2 + a1,1c2 + a0,3c1

3 + a2,1c1. 

In general, we have  (ω − β)cω = Pω(c1, c2,⋯ , cω−1), where Pω is a polynomial in c1, c2,⋯ , cω−1 with 

respect to the coefficients ai,j  of the right-hand side of the equation (7). Let δ = min{|1 − β|, |2 −

β|,⋯ , |ω − β|}. This minimum exists for β is non-positive limited integer number because |i − β| > 0 for 

each i = 1,2,⋯ ,ω − 1. Then we have the following cases for the minimum δ   

a) If 𝛽 ≅ 1 with 𝛽 ≠ 1, then 𝛿 becomes an infinitesimal.  

b) If 𝛽 ∈ 𝒎(0), then the minimum number 𝛿 ≅ 1. 

c) If 𝛽 is unlimited, then 𝛿 also becomes unlimited except in the case that 𝛽 ∈ 𝑔𝑎𝑙(𝜔), that is 

the distance between 𝜔 and 𝛽 is limited. 

Now, recall equation (7) and let   
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F(x, y) = ∑ ai,jx
iyj

ω1,ω2

i,j>0

,                                                                                (13) 

be a power series in two variables x and y, where x and y are complex or real numbers, and the coefficient 

ai,j is limited for each i = 0,1,⋯ ,ω1 and j = 0,1,⋯ ,ω2 where ω1and ω2 are unlimited. Then for each ai,j  

there exist a limited ci,j ∈ ℝ
+  such that |ai,j| ≤ ci,j, for  

i = 0,1,⋯ ,ω1 and  j = 0,1,⋯ ,ω2. Let M = max{ci,j: 0 ≤  i ≤ ω1 and 0 ≤  j ≤ ω2}. Then 

|f(x, y)| ≤  ∑ |ai,j||x|
i|y|j

ω1,ω2

i,j=0

≤ ∑ M|x|i|y|j

ω1,ω2

i,j=0

 ≅  
M

(1 − |x|)(1 − |y|)
 ,    

for all (x, y) ∈ IntBnd(1 − ς, 1 − ς), where ς is a positive real infinitesimal. Therefore, we have 

|αx + ∑ ai,jx
iyj

ω1, ω2

i,j≥2

| ≤  ∑ M|x|i|y|j

ω1, ω2

i,j=0

−M(|x|)0 −M(|y|)1(|x|)0, 

Without restriction of generality we can assume that the variables are real numbers, then 

x
dy

dx
− βy ≤  

M

(1 − x)(1 − y)
−  M −  My . 

Thus,  
M

(1−x)(1−y)
−  M −  My  is an upper bound for equation (7) provided that  α is limited. Consider the 

equation  

δ ŷ − H(x, ŷ) = 0,                                                           (14) 

where δ is minimum of |n − β|, n ∈  ℕ and 

H(x, ŷ) =
M

(1 − x)(1 − ŷ)
−  M −  Mŷ  =  Ax + ∑ âi,jx

iŷj

ω1, ω2

i,j≥2

, 

for ŷ = ∑ ĉkx
kω

k=1  is an analytic series solution of equation (14), where ω is unlimited. Then   

δ ∑ ĉkx
k

ω

k=1

 − (Ax + ∑ âi,jx
i (∑ ĉkx

k

ω

k=1

)

jω1, ω2

i,j≥2

= 0.  

That is, δ ĉ1x + δ ĉ2x
2 +⋯+ δ ĉωx

ω = Ax + (â2,0 + â1,1ĉ1 + â0,2ĉ1
2)x2  

+(2â0,2ĉ1ĉ2 + â3,0 + â1,2ĉ1
2 + â1,1ĉ2 + â0,3ĉ1

3 + â2,1ĉ1)x
3  +  ⋯ + Pω(ĉ1, ĉ2,⋯ , ĉω−1) + ⋯ . 

Thus,  

δ ĉ1 = A  

δ ĉ2 = â2,0 + â1,1ĉ1 + â0,2ĉ1
2 

⋮ 

δ ĉω = Pω(ĉ1, ĉ2,⋯ , ĉω−1), 
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where Pω is a polynomial in ĉ1, ĉ2,⋯ , ĉω−1 with the coefficients of the series H(x, y). Since 0 < δ ≤  |n −

β| , then ŷ  is an upper bound of y . Put Λ = max { |ĉ1|, |ĉ2|,⋯ , |ĉω|},  then ŷ  become an infinitesimal 

whenever x =
x0

Λ
  and since ŷ  is an upper bound of y , then also y  becomes an infinitesimal. For an 

illustration consider the following differential equation form: 

 x
dy

dx
− β y = ax, 

then  y =
a

1−β
x + c  x−β is general solution, where c is an arbitrary constant and according to the value of 

β we have the following solution results of y: 

i. The solution 𝑦 becomes unlimited in the following situations: 

 1. β ∈ m(1) where a, x and c are appreciable. 

 2. Either β  is positive unlimited and |x| < 1  or β  is negative unlimited and |x| > 1 , for    

                 limited a and c. 

 3. Both c and β are unlimited and a is limited with x = 1. 

 4. β ∈  m(1)⋂(ζ − Microm(1))
c
 where ζ is a positive real infinitesimal and  

 4.1. If a ∈ ζ − Microm(0) , then y ≅  cx . Therefore if c  (or x )  is unlimited and x  (or c ) is   

                   appreciable or both of them are unlimited, then y becomes unlimited. 

 4.2. If x ∈  ζ − Microm(0), then y ≅  a. Thus if a is unlimited then y is also unlimited. 

ii. The solution 𝑦 becomes infinitely close to the singularity (that is 𝑦 becomes infinitesimal) in the 

following cases:  

1. β ∉ m(1) and β , a  and c are limited with x ∈  m(0). 

2. Either β  is positive unlimited and |x| > 1  where x  is limited or  β  is  negative unlimited  

               and |x| < 1, where both a and c are limited. 

3. x and β are appreciable with β ∉ m(1) and c and a are infinitesimals. 

4. β = α̂ + iβ̂  where α̂  and β̂  are limited real numbers. If we assume that r  is the radius and θ      

               is the argument of  x, then we have |xβ| = rα̂ e−θ β̂. 

4.1 If α̂ is a positive infinitesimal and r ∈ m(0), then y becomes an infinitesimal. 

4.2 If α̂  is a negative infinitesimal or standard infinitesimal and β̂ ∉ IntBnd(1)  it suffices  

                 to assume that θ  is a function of r  such that α̂Log(r) − β̂θ(r)  becomes negative  

                 unlimited as r ∈ m(0) (for example take θ(r) = α̂(Log(r))
2
) to make y infinitesimal.  

 

Note that, for a ≅ 0, the solution reduces to a linear solution. y ≅ c x−β, whose standard part is exactly 

y 
o = (c x−β)

 

o
, this leads to the result that the shadow solution for a ≅ 0 is a linear asymptote for the 
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general solution in m(0). According to the cases discussed in the above illustration for β ∉ m(n), where n 

is limited natural number, and β  is limited real number, then for x ∈ ζ − Microhal(0) the solution y 

becomes infinitely close to the singularity, that is y is infinitesimal shadow solution of singularity of the 

differential equation (7). 

Let α and 
1

n−β
, for each n ∈ ℕ, be limited real numbers. Since each ai,j is limited for i = 0, 1,⋯ ,ω1 

and j = 0, 1,⋯ ,ω2 with i + j ≥  2, then the coefficients ck of the equation (11) becomes limited for k =

1, 2,⋯ , ω. Hence there exists positive standard reals c̃k ∈ ℝ such that  

|ck| ≤ c̃k for each k = 1, 2,⋯ ,ω.  

Put ℳ = max { c̃1, c̃2,⋯ , c̃ω}, then ∑k=1
ω ℳxk is an upper bound of (11) and it becomes an infinitesimal 

when x =
x0

ℳ
  and  x0 ∈ ζ − Microhal(0). 

 

II - If  𝛽 ∈ ℝ\{𝑚(𝑛): 𝑛 ∈ ℕ𝑠𝑡} and 𝛼 is an Infinitesimal 

Assume that 𝛽 ∉ 𝒎(𝑛)  where 𝑛  is a limited natural number and 𝛽  is limited, and let 𝛼, 𝑎𝑖,0 ∈ 𝜁 −

𝑴𝒊𝒄𝒓𝒐𝒉𝒂𝒍(0), for 𝑖 = 2,⋯ ,𝜔1, then the equation (7) will become 

x
dy

dx
− βy ≅ ∑ ai,j  x

iyj

ω1,ω2

i+j≥2

.  

Since (1 − β)c1 ≅ 0 and (2 − β)c2 ≅ a2,0 + a1,1c1 + a0,2c1
2 ≅ 0 for β is limited, then c1 ≅ 0 and c2 ≅ 0. 

Hence the coefficients of (11) becomes infinitesimal. Now let  

τ = max{|c1|, |c2|,⋯ , |cω|}, if τ is an infinitesimal, then in general we will have:  

  (ω − β)cω ≅ Pω(c1, c2,⋯ , cω−1). 

Thus, cω ≅ 0, and  

 ∑|x|

ω

i=k

≥∑|xk|

ω

i=k

>>∑|ckx
k|

ω

i=k

≥ |y| .                                (15) 

Therefore, the analytic solution y becomes infinitesimal either if x ∈ ζ − Microhal(0), or x =
x0

τ
, where  

xo ∈ ζ − Microhal(0). 

 

III - Where 𝛼 and 𝛽 are Infinitesimals 

Assume that α, β, ai,0 ∈ ζ −Microhal(0), for i = 2,⋯ ,ω1. Then, the equation (7) will become 

x
dy

dx
≅ ∑ ai,j x

iyj

ω1,ω2

i+j≥2

.        

Suppose that equation (11) is the shadow solution for the above differential equation. Then  
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  c1 ≅ 0,  

2c2 ≅ a2,0 + a1,1c1 + a0,2c1
2 ≅ 0, 

        ⋮ 

In general, 

ωcω ≅ Pω(c1, c2,⋯ , cω−1), 

where Pω  is a polynomial in c1, c2,⋯ , cω−1  with respect to the coefficients ai,j . Now, let 

η =max{|c1|, |c2|,⋯ , |cω|} and  x0 ∈ ζ − Microhal(0). We have either η is limited or unlimited. If η is 

limited then we take x = x0 and for the other case, we choose the independent variable x =
x0

η
. Hence, in 

both cases the solution (11) become the shadow solution of the singularity.  

 

IV - If  β ∈ {𝐦(n): n ∈ ℕst}  

Recall equation (7)  

 x
dy

dx
− βy = αx + ∑ ai,j x

iyj

ω1,ω2

i+j≥2

. 

Then we have the following results about the solution of the differential equation (7)    

 

IV – a. β = 1 and α = 0. 

Assume that β = 1 , then from (12) we obtain that α = 0 . Hence (7) becomes  

x
dy

dx
− y = ∑ ai,j x

iyj

ω1,ω2

i+j≥2

. 

Now, put y = xz, then we get 

x (x
dz

dx
+ z) − xz =  ∑ ai,j x

i(xz)j

ω1,ω2

i+j≥2

. 

Thus,                                                                    
dz

dx
=
1

x2
∑ ai,j x

i(xz)j

ω1,ω2

i+j≥2

 . 

 

By existence and uniqueness Theorems the previous equation has an analytic solution at m((0,0)). Assume 

that this solution given by  

 z =∑kix
i

ω

i=1

. 

Thus, equation (7) has unlimited number of analytical solutions at  m((0,0)) and zero at x = 0.  
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IV – b.   β = 1 and α ≠ 0. 

Without loss of generality, we consider the following form of the differential equation (7). 

x
dy

dx
− y = αx, 

where α is non-zero constant. Then its solution is given by:  

x−1y = α∫x−1 dx + c  or  y = x(α Log(x) + c), 

where c is an arbitrary constant. Thus, there is no analytical solution at x = 0. If x is infinitesimal, then  x 

is in the extended complex domain, so let r  be the radius and θ  be the argument of x , with r  being 

nonstandard positive infinitesimal and θ ≅ 0 . To make  y ∈ m(0) , it suffices that α ≅ 0+  such that 

α Log(r) is limited.  

In general, if β = 1 and α is non-zero in the equation (7), then we obtain the solution depending on 

an arbitrary constant given from a power series in x , xLog(x) and they are infinitesimals for  x = r eiθ 

under the condition given for r and θ in the previous example. Now, assume that x is infinitesimal, β = 1 

and α = 0, then the differential equation (7) has unlimited analytical solutions. Moreover if x is standard 

infinitesimal, that is x = 0, then (7) has zero solution. 

 

IV – c.   β ∈ (m(1) ⋂(ζ − Microhal(1))
c
). 

Assume that and α is an infinitesimal such that α, ai,j ∈ ζ − Microhal(0), for i = 2,⋯ ,ω1. Then from (12), 

we get that c1 an infinitesimal. Since c2 = 
a2,0+a1,1c1+a0,2c1

2

2−β
 therefore c2 is also an infinitesimal. In general 

 (ω − β)cω = Pω(c1, c2,⋯ , cω−1). 

So, we get  cω as an infinitesimal whenever the maximum of the radius of the coefficients of (11) is 

infinitesimal. Since β ∈ m(1) and α is appreciable, then the coefficients ci in (11) are unlimited and zero 

at x = 0. This gives us that (7) has  y is an infinitesimal solution. Therefore, from (11), and for x ∈ ζ −

Microhal(0) we obtain that y is an infinitesimal.  

 

IV – d.   β ∈ m(n) and n is a limited natural number 

We consider the transformation y =
a

1−β
x + z x, then 

dy

dx
=

a

1 − β
+ z + x

dz

dx
.   

Put the last result in (7), we get 

x (
a

1 − β
+ z) + x2

dz

dx
− βx (

a

1 − β
+ z) = αx + ∑ ai,jx

i (
a

1 − β
x + zx)

j
ω1,ω2

i+j≥2

. 
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Divide both sides by x, we will get 

x
dz

dx
− (β − 1)z = α1x + ϕ1(x, z).                                            (18) 

By a suitable transformation if we make ϕ1(x, z) through the origin. Then (18) becomes the same as (7), 

with β − 1 instead of β.  A finite number of transformations will reduce the problem to the case (3.4.1). In 

general, if β is an appreciable natural number and α is standard infinitesimal then (7) has an unlimited 

number of analytical solutions at m((0,0)) and zero at x = 0, and if α is not standard infinitesimal then 

there does not exist any analytical solutions at the origin for the equation (7). 

 

IV – e.   β is unlimited and α is limited  

The coefficients ci , for i = 1, 2,⋯ ,ω of (11) become infinitesimals whenever  
1

1−β
∈ ζ −𝑴𝒊𝒄𝒓𝒐𝒉𝒂𝒍(0) 

and η, ai,0 ∈ ζ − Microhal(0), for i = 2,⋯ ,ω1. Hence, the solution y is infinitesimal for any limited x ∈

ζ − Microhal(0). Thus, the solution becomes infinitely close to the singularity. 

 

2.3 Irreducible Differential Form 

Consider the first-order differential equation having irreducible differential form. That is the 

differential equation of the form: 

M(x, y)dx + N(x, y)dy = 0, 

where M(x, y) and N(x, y) are power series in x and y. Therefore, assume that  

 (ax + by + ∑ ai,jx
iyj

ω1,ω2

i+j≥2

)dx + (âx + b̂y + ∑ âi,jx
iyj

ω3,ω4

i+j≥2

) dy = 0.                  (19)  

So, the differential coefficients are convergent in the m((0,0)) and (0,0) is a singular point for (19), where 

ωk for k=1, 2, 3, 4 is unlimited with ∏
1

ωk

4
k=1 ∉ ζ − Microhal(0) and the coefficients of the variables are 

limited. By the transformation y = xz equation (19) becomes   

(ax + bxz + ∑ ai,j x
i+j zj

ω1,ω2

i+j≥2

)dx + (âx + b̂xz + ∑ âi,jx
i+jzj

ω3,ω4

i+j≥2

)(xdz + zdx) = 0 

So, 

 x
dz

dx
= −

a + (â + b̂)z + b̂z2 + ∑ αi,j x
i zj

ω5,ω6
i+j≥2

â + b̂z + ∑ âi,jx
izj

ω7,ω4
i+j≥2

,  
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where ω5 =(max{ω1, ω3} +max{ω2, ω4}) − 1, ω6 = max{ω2, ω4} and ω7 = (ω3 +ω4) − 1. We know 

that the geometric series 1 + g(x, y) + (g(x, y))
2
+⋯ converges to 

1

1−g(x,y)
 whenever |g(x, y)| < 1 and it 

diverges when |g(x, y)| ≥ 1. Thus, 

1 + g(x, y) + (g(x, y))
2
+⋯+ (g(x, y))

ω
≅

1

1 − g(x, y)
,                      (20) 

where ω is unlimited and 
1

ω
∉ ζ −  Microhal(0). 

Case1: If a is appreciable, then the equation (20) becomes 

dz

dx
≅

1
−x
a
(â + b̂z∑ âi,jx

izj
ω7,ω4
i+j≥2 ) (1 − g(x, z) +⋯+ (−g(x, z))

ω
)
, 

where g(x, z) =  
1

a
((â + b)z + b̂z2 + ∑ αi,j x

i zj
ω5,ω6
i+j≥2 )  because |g(x, z)| < 1 , whenever (x, z) ∈ ζ − 

Micrhalo ((0,0)). Hence, the problem is the same as the case in the section (2), where one of the differential 

coefficients is unlimited whenever x and z are standard infinitesimals.  

 

Case2: If â is appreciable, and a ∈ m(0), then the equation (20) will take the form: 

x
dz

dx
≅
1

â
(((â + b)z + b̂z2 + ∑ αi,jx

izj

ω5,ω6

i+j≥2

)(1 − g(x, z) + (g(x, z))
2
−⋯ + (−1)ω(g(x, z))

ω
) ), 

where g(x, z) =
1

â
(â + b̂z + ∑ âi,jx

izj 
ω7,ω4
i+j≥2 because |g(x, z)| < 1, whenever (x, z) ∈ ζ − Microhal((0,0)).  

This problem is the same as the case in the section (3), where the differential coefficients are infinitesimals 

or unlimited whenever x and z are standard infinitesimal. The left-hand side of (20) is an infinitesimal 

whenever x ∈ m(0), then we have 

a + (b + â)z + b̂z2 ≅ 0. 

If x is standard infinitesimal, then  

 a + (b + â)z + b̂z2 = 0 

ii. If â + b̂z ∉ m(0) then equation (20) reduces to the case as in Section 2.2, where the differential 

coefficients are both standard infinitesimals or unlimited and it has an analytical solution.  

iii. If �̂� + �̂�𝑧 ∈ 𝒎(0) and the other coefficients are appreciable then (20) will have no analytical 

solution as 𝑥 is infinitely close to the singularity. 
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3 DISCUSSION AND CONCLUSIONS 

We have expressed the coefficient of the and as power series in two variables passing through the 

origin. If it is not at the centre, we can do a limited-distance translation to make it pass through. Then, we 

found a nonstandard analytic solution for the first-order differential equation in the monad of singularity, 

while sometimes in classical mathematics, there are no solutions for some differential equations with 

nonstandard analysis; by using external and internal sets, one can find a precise, perfect nonstandard 

solution for them. 
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