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 ABSTRACT 

In this study, we introduced new iterative techniques, for the purpose solving nonlinear equations. 

The new approaches are based on the auxiliary equation and Newton's method, respectively. Our method's 

a convergence analysis is explained. The novel approach is found to have convergence order of six. 

Numerical experiments show that the new method work better than well-known iterative methods and is 

similar to them. 
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1 INTRODUCTION 

Numerical analysis is a branch of mathematics and computer science that develops, analyses, and 

solves continuous mathematics problems numerically. These problems come up when algebra, geometry, 

and calculus are used in the real world. They involve variables that change over time and can be found in 

the natural sciences, social sciences, engineering, medicine, and business, among other fields. A novel 

iterative strategy has been developed to find approximate solutions to the nonlinear equation f(x) = 0. For 

further information, read [1-11]. This numerical approach was created by using many different methods, 

such as Taylor series, homotopy [8], the quadrature formula [9], and the decomposition method [10]. 

In this paper, we propose a two- steps iterative method having sixth- order converge by using the 

Taylor series and the auxiliary equation defined in [1].  
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2 ITERATIVE METHODS 

Suppose that the nonlinear equation is 

 𝑓(𝑥) = 0 (1) 

Let 𝑥0 be the known  initial guess for the necessary root and 𝛾 be a simple root. Assume  

 𝑥1 = 𝑥0 + ℎ, |ℎ| ≪ 1 (2) 

by using the Taylor series for 𝑓(𝑥0 + ℎ) 

 𝑓(𝑥0 + ℎ) = 𝑓(𝑥0) + ℎ𝑓′(𝑥0) + 𝑂(ℎ2) (3) 

we are looking for a small ℎ such as 

 𝑓(𝑥0 + ℎ) = 0 ≈ 𝑓(𝑥0) + ℎ𝑓′(𝑥0) (4) 

giving 

 ℎ = −
𝑓(𝑥0)

𝑓′(𝑥0)
 (5) 

Consider the following auxiliary equation of (Noor and Ahmed, 2006) with a parameter 𝑝 

 𝑔(𝑥) = 𝑝3(𝑥 − 𝑥0)2𝑓2(𝑥) − 𝑓(𝑥) = 0 (6) 

where 𝑝 ∈ 𝑅 and |𝑝| < ∞. 

It is clear, the root of equation (1) is also the root for equation (6) and vice versa. To the better 

approximate for the required root use 𝑥1 = 𝑥0 + ℎ, then equation (6) gives 

 𝑝3ℎ2𝑓2(𝑥0 + ℎ) − 𝑓(𝑥0 + ℎ) = 0 (7) 

Expanding equation (7) by Taylor theorem, obtained 

 0 ≈ −𝑓(𝑥0) − ℎ𝑓′(𝑥0) + ℎ2 (𝑝3𝑓2(𝑥0) −
𝑓′′(𝑥0)

2
) (8) 

From equation (5) and equation (8), we get 

 ℎ = −
2𝑓(𝑥0)𝑓′(𝑥0)

2𝑓′2(𝑥0) + 2𝑝3𝑓2(𝑥0) − 𝑓′′(𝑥0)𝑓(𝑥0)
 (9) 

The following one-step iterative approach can be used to solve the nonlinear equations 𝑓(𝑥) = 0. 

 

Algorithm 1: The value of 𝑝 is selected such that the signs of 𝑓(𝑥𝑛) and 𝑝 are the same. Calculate 𝑥1, 𝑥2, 

… for a given 𝑥0 iterative schemes, 

 𝑥𝑛+1 = 𝑥𝑛 −
2𝑓(𝑥𝑛)𝑓′(𝑥𝑛)

2𝑓′2(𝑥𝑛) + 2𝑝3𝑓2(𝑥𝑛) − 𝑓′′(𝑥𝑛)𝑓(𝑥𝑛)
  

Know, by combine Algorithm 1 and Newton’s method, we obtained the following two-step iterative 

method. 

Algorithm 2: The value of 𝑝 is selected such that the signs of 𝑓(𝑥𝑛) and 𝑝 are the same. Calculate 𝑥1, 𝑥2, 

… for a given 𝑥0 iterative schemes, 
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 𝑦𝑛 = 𝑥𝑛 −
2𝑓(𝑥𝑛)𝑓′(𝑥𝑛)

2𝑓′2(𝑥𝑛) + 2𝑝3𝑓2(𝑥𝑛) − 𝑓′′(𝑥𝑛)𝑓(𝑥𝑛)
  

 𝑥𝑛+1 = 𝑦𝑛 −
𝑓(𝑦𝑛)

𝑓′(𝑦𝑛)
  

 

3 CONVERGENCE ANALYSIS 

The convergence analysis will be discussed for the iterative method in the following theorem, where 

we used Mathematica program 9 to prove that the convergence order for Algorithms 2 is six. 

Theorem 1: A sufficiently differentiable function 𝑓: 𝐼 ∈ 𝑅 →  𝑅 for an open interval 𝐼 should have a simple 

zero 𝛾 ∈ 𝐼. The iterative strategy of Algorithm 2 demonstrates sixth-order convergence if 𝑥0 is closely 

enough to 𝛾.  

Proof: The technique is given by 

 𝑦𝑛 = 𝑥𝑛 −
2𝑓(𝑥𝑛)𝑓′(𝑥𝑛)

2𝑓′2(𝑥𝑛) + 2𝑝3𝑓2(𝑥𝑛) − 𝑓′′(𝑥𝑛)𝑓(𝑥𝑛)
 (10) 

 𝑥𝑛+1 = 𝑦𝑛 −
𝑓(𝑦𝑛)

𝑓′(𝑦𝑛)
 (11) 

Let 𝛾 be a simple zero of 𝑓. By the Taylor expansions, 

 𝑓(𝑥𝑛) = 𝑓′(𝛾)(𝑒𝑛 + c2en
2 + c3en

3 + 𝑂(𝑒𝑛
4)) (12) 

 𝑓′(𝑥𝑛) = 𝑓′(𝛾)(1 + 2c2𝑒𝑛 + 3c3en
2 + 4𝑐4𝑒𝑛

3 + 𝑂(𝑒𝑛
4)) (13) 

and 

 𝑓′′(𝑥𝑛) = 𝑓′(𝛾)(2c2 + 6c3𝑒𝑛 + 12c4𝑒𝑛
2 + 20c5𝑒𝑛

3 + 𝑂(𝑒𝑛
4)) (14) 

where 𝑐𝑘 =
𝑓(𝑘)(𝛾)

𝑘!𝑓′(𝛾)
, 𝑘 = 2, 3, …  and 𝑒𝑛 = 𝑥𝑛 − 𝛾 . Multiple equations (12) by (13) and multiple 

equations (14) by (12), gives us 

 𝑓(𝑥𝑛)𝑓′(𝑥𝑛) = 𝑓′2(𝛾) (2𝑒𝑛 + 6c2en
2 + 2(2𝑐2

2 + 4c3)en
3 + O(en

4)) (15) 

 𝑓(𝑥𝑛)𝑓′′(𝑥𝑛) = 𝑓′2(𝛾) (2c2𝑒𝑛 + (2c2
2 + 6c3)en

2 + (8c2c3 + 12c4)en
3 + O(en

4)) (16) 

take the power for equations (12) and (13) 

 𝑓2(𝑥𝑛) = 𝑓′2(𝛾)(en
2 + 2c2en

33 + O(en
4)) (17) 

 𝑓′2(𝑥𝑛) = 𝑓′2(𝛾) (1 + 4c2𝑒𝑛 + (4c2
2 + 6c3)𝑒𝑛

2 + (12c2c3 + 8c4)𝑒𝑛
3 + O(en

4)) (18) 

After an elementary calculation, we obtain 
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2𝑓′2(𝑥𝑛) + 2𝑝3𝑓2(𝑥𝑛) − 𝑓(𝑥𝑛)𝑓′′(𝑥𝑛)

= 𝑓′2(𝛾) (2 + 6c2𝑒𝑛 + (−2c2
2 − 6c3 + 2(4c2

2 + 6c3) + 2𝑝3)𝑒𝑛
2

+ (−8c2c3 − 12c4 + 2(12c2c3 + 8c4) + 4c2𝑝3)𝑒𝑛
3 + O(en

4)) 

(19) 

From equations (15) and (19), we obtain 

 
2𝑓(𝑥𝑛)𝑓′(𝑥𝑛)

2𝑓′2(𝑥𝑛) + 2𝑝3𝑓2(𝑥𝑛) − 𝑓(𝑥𝑛)𝑓′′(𝑥𝑛)
= 𝑒𝑛 + (−c2

2 + c3 − 𝑝3)en
3 + O(en

4) (20) 

Thus, from equations (10) and (20), we obtained 

 

𝑦𝑛 = 𝛾 + (c2
2 − c3 + 𝑝3)𝑒𝑛

3 + (−3c2
3 + 6c2c3 − 3c4 − c2𝑝3)𝑒𝑛

4

+ (6c2
4 − 18c2

2c3 + 6c3
2 + 12c2c4 − 6c5 − 𝑝6)𝑒𝑛

5

+ (−9c2
5 − 29c2

2c4 + 19c3c4 − 10c6 + 3c4𝑝3 + c2
3(37c3 + 4𝑝3)

+ c2(−28c3
2 + 20c5 − 7c3𝑝3 + 2𝑝6)) 𝑒𝑛

6 + 𝑂(𝑒𝑛
7) 

(21) 

Also expanding 𝑓(𝑦𝑛) and 𝑓′(𝑦𝑛) about 𝛾, we have 

 

𝑓(𝑦𝑛) = 𝑓′(𝛾)[(c2
2 − c3 + 𝑝3)𝑒𝑛

3 + (−3c2
3 + 6c2c3 − 3c4 − c2𝑝3)𝑒𝑛

4

+ (6c2
4 − 18c2

2c3 + 6c3
2 + 12c2c4 − 6c5 − 𝑝6)𝑒𝑛

5

+ (−9c2
5 − 29c2

2c4 + 19c3c4 − 10c6 + 3c4𝑝3 + c2
3(37c3 + 4𝑝3)

+ c2(−28c3
2 + 20c5 − 7c3𝑝3 + 2𝑝6) + 𝑐2(c2

2 − c3 + 𝑝3)2)𝑒𝑛
6

+ 𝑂(𝑒𝑛
7)] 

(22) 

 

𝑓′(𝑦𝑛) = 𝑓′(𝛾)[1 + 2𝑐2(c2
2 − c3 + 𝑝3)𝑒𝑛

3 + 2𝑐2(−3c2
3 + 6c2c3 − 3c4 − c2𝑝3)𝑒𝑛

4

+ 2𝑐2(6c2
4 − 18c2

2c3 + 6c3
2 + 12c2c4 − 6c5 − 𝑝6)𝑒𝑛

5

+ 2𝑐2(−9c2
5 − 29c2

2c4 + 19c3c4 − 10c6 + 3c4𝑝3 + c2
3(37c3 + 4𝑝3)

+ c2(−28c3
2 + 20c5 − 7c3𝑝3 + 2𝑝6) + (𝑐2+1.5𝑐3)(c2

2 − c3 + 𝑝3)2)𝑒𝑛
6

+ 𝑂(𝑒𝑛
7)] 

(23) 

From (11), (21), (22) and (23) we have 

 𝑥𝑛+1 = 𝛾 +
1

6
(𝑐2

3 − 𝑐2𝑐3 + 𝑝3𝑐2)2𝑒𝑛
6 + 𝑂(𝑒𝑛

7) (24) 

This implies that 

 𝑒𝑛+1 =
1

6
(𝑐2

3 − 𝑐2𝑐3 + 𝑝3𝑐2)2𝑒𝑛
6 + 𝑂(𝑒𝑛

7) (25) 

This shows that the two-step iterative method given in Algorithm 2 has sixth-order convergences. 
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4 NUMERICAL EXAMPLE 

In this article, we provide several numerical examples to demonstrate the effectiveness of the newly 

designed iterative methods. The methods of Muhammad and Faizan [1] (MF), Rostam and Shno [2] (RS), 

Manoj and Arvind [3] (MA), Shuping and Youhua [4] (SY), Obadah and Isha [5] (OI), Najmuddin and 

Vimal [6] (NV), Srinivasarao and Shanmugasundaram [7] (SS) and the method of Newton Raphson we 

compare with RMO (Algorithm 2), the scheme proposed in this work. As a result, for computer programs, 

the following stopping conditions are used: 

i. |𝑥𝑛 − 𝑥𝑛−1| < 𝜖 

ii. |𝑓(𝑥𝑛)| < 𝜖 

We used 𝜖 = 10−15 and taking the following examples in [1-6] 

𝑓1(𝑥) = sin2(𝑥) − 𝑥2 + 1  

𝑓2(𝑥) = (𝑥 − 1)3 − 1  

𝑓3(𝑥) = 𝑥3 + 4𝑥 − 10  

𝑓4(𝑥) = 𝑥2 − (1 − 𝑥)5   

𝑓5(𝑥) = 𝑒𝑥2+7𝑥−30 − 1  

𝑓6(𝑥) = 𝑥2 − 𝑒𝑥 − 3𝑥 + 2  

𝑓7(𝑥) = cos(𝑥) − 𝑥  

Tables 1, also show the number of iterations required to approach the zero (IT), the approximate zero 

𝑥𝑛, the value of |𝑓(𝑥𝑛)| and |𝑥𝑛 − 𝑥𝑛−1|. 

Table 1  Examples and comparisons between different methods.  

 IT 𝒙𝒏 |𝒇(𝒙𝒏)| |𝒙𝒏 − 𝒙𝒏−𝟏| 

𝑓1, 𝑥0 = 1 

NM 6 1.404491 3.331e-16 3.060e-13 

MF 3 1.404491 3.331e-16 6.247e-07 

RS 3 1.404491 3.331e-16 1.147e-04 

OI 3 1.404491 6.53e-114 1.67e-19 

SY 2 1.404491 4.441e-16 5.208e-04 

MA 2 1.404491 3.331e-16 1.018e-03 

NV 5 1.404491 3.331e-16 1.028e-09 

SS 2 1.404491 4.441e-16 4.485e-06 

RMO 2 1.404491 2.44e-16 7.92e-12 
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𝑓2, 𝑥0 = 2,5 

NM 6 2 0 1.155e-14 

MF 3 2 0 1.067e-07 

RS 3 2 0 8.882e-16 

OI 3 2 7.91e-127 9.62e-22 

SY 2 2 0 1.678e-03 

MA 2 2 0 8.432e-04 

NV 5 2 0 4.393e-09 

SS 2 2 0 2.157e-03 

RMO 2 2 0 2.05e-12 

𝑓3, 𝑥0 = 1 

NM 5 1.365230 0 2.127e-11 

MF 3 1.365230 0 2.127e-11 

RS 3 1.365230 0 3.255e-03 

OI 3 1.556773 0 1.573e-11 

SY 2 1.365230 0 8.102e-06 

MA 2 1.365230 0 6.725e-06 

NV 5 1.365230 0 7.834e-13 

SS 2 1.365230 0 4.441e-04 

RMO 2 1.556773 0 1.31e-12 

𝑓4, 𝑥0 = 0.3 

NM 4 0.345954 6.939e-17 6.431e-11 

MF 2 0. 345954 6.939e-17 7.581e-06 

RS 3 0.345954 6.939e-17 9.520e-08 

OI 3 0.345954 3.62e-18 4.832e-21 

SY 2 0.345954 6.939e-17 3.638e-08 

MA 2 0.345954 6.939e-17 1.004e-07 

NV 4 0.345954 1.943e-16 4.061e-12 

SS 2 0.345954 6.939e-17 3.933e-10 

RMO 1 0.345954 6.94e-17 8.53e-11 

𝑓5, 𝑥0 = 3,5 

NM 12 3 0 2.531e-13 

NA 6 3 0 3.34e-42 
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RS 6 3 0 3.567e-13 

OI 4 3 0 8.182e-06 

SY 5 3 0 8.453e-05 

MA - NaN* - - 

NV - NaN - - 

SS 5 3 0 2.352e-10 

RMO 3 3 0 1.00e-04 

𝑓6, 𝑥0 = 2 

NM 5 0.257530 0 9.864e-14 

MF 3 0.257530 1.0e-3 7.6e-21 

RS 3 0.257530 0 9.876e-07 

OI 3 0.257530 2.85e-130 8.73e-22 

SY 4 0.257530 0 3.955e-05 

MA 3 0.257530 0 2.799e-11 

NV 5 0.257530 0 1.929e-13 

SS 2 0.257530 0 1.819e-05 

RMO 2 0.257530 0 1.913e-07 

𝑓7, 𝑥0 = 1,7 

NM 54 0.739085 4.441e-16 3.259e-08 

MF 3 0.739085 0 1.22e-35 

RS 2 0.739085 0 1.025e-03 

OI 3 0.739085 6.67e-207 1.68e-34 

SY 2 0.739085 0 2.329e-04 

MA 2 0. 739085 1.110e-16 4.060e-04 

NV 4 0.739085 0 1.088e-08 

SS 2 0.739085 0 1.795e-04 

RMO 2 0.739085 0 1.35e-10 

*  NaN means we obtain 0/0 for the formula. 

5 CONCLUSION 

Table 1 shows that the efficiency of our techniquewe found in Algorithm 2 obtain results 

with lower or the same number of iterations, for each of the (3rd order, 4th order, 6th order, and 

7th order) schemes or Newton's method itself. 
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We recommendation this method extended to the system of nonlinear or adding another 

method to algorithm 2 for creating a new three steps iterative method. 
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