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 ABSTRACT 

In recent decades, climate change has evolved from a hypothetical threat to the earth and its 

inhabitants to a terrifying fact. It is occurring simultaneously that the price of oil and natural gas continues 

to rise, endangering the national economy and global security. As a result, seeking alternative renewable 

energy sources has become a pressing necessity. However, one of the main issues with wind and solar 

energy is that it is variable and intermittent, resulting in erroneous output power projections. To address 

this issue, the main objective of this paper is to present and analyze a new strategy for reducing the output 

power intermittency of distributed wind farms. Instead of aggregating all wind turbines in one location, the 

proposed approach distributes a large number of wind turbines throughout diverse geographical locations 

with significant wind potential energy. The total output power generation from all wind turbines is then 

aggregated through a single control system, which injects the power into the grid in a manner similar to a 

virtual power plant. Later, the analysis is broadened to further smooth out the fluctuation of the aggregated 

wind farm power by using energy storage devices and smart grid technologies. Finally, the analytical results 

reveal that the proposed methodology allows for extended periods of energy delivery when wind speeds 

are low or not blowing. 

 

KEYWORDS: Capacity factor, energy storage, power intermittency, penalty factor, smart grid, 

wind turbine 

1 INTRODUCTION 

Weather patterns are changing over a long period of time due to climate change, which is now 

obvious. Although these changes could be considered natural, human actions have been the primary cause 
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of climate change, mostly as a result of the burning of fossil fuels, which produces greenhouse gas emissions 

[1]. Global environmental deterioration and climate change are accelerated by the use of fossil fuels, 

specifically natural gas, crude oil, and coal, which are the major contributors to CO2 emissions. For example, 

the escalating occurrence of thick smog-cloud over many major cities of the world for several months each 

year (e.g., in China [2]), rising healthcare costs because of carcinogenic emissions, devastating droughts, 

and floods [3] have become grave threats to the welfare and economic development of countries all over 

the world. As a result, governments have adopted new regulatory policies in response to the Paris 

Agreement's approval in 2015 and the Kyoto Protocol's predecessors in 2005, which raised awareness of 

the need to reduce CO2 emissions and advance various low-carbon generation technologies [4].  

 

These are the key drivers underlying the change of electric power generation from fossil fuels to 

clean energy sources such as wind, solar, and hydropower plants. Due to their advanced technology and 

environmental friendliness, renewable energy resources promise to make a significant contribution to power 

generation and the final energy user [5]. The wind is one of the most advantageous renewable energy 

sources, and it has garnered significant global attention as a result of increased investment in different wind 

turbine sizes, capacities, and technologies. This is mainly because the maximum power capacity of a single 

turbine can reach multi-megawatt levels, implying that installing this technology for power generation 

requires much smaller installation expenditures and lands compared to other smaller-scale renewable 

technologies when deployed on grid scales [6]. 

 

By the end of 2011, the total global wind capacity was 238.351 GW, with the United States leading 

the way in terms of installed capacity of 46.919 GW [7]. Wind power can now meet at least 20% of total 

consumer demand in countries such as Germany and Denmark. Spain is the second most populous country 

in Europe, with a total capacity of 27.089 GW of wind turbines installed. The country trails behind Germany 

with 62.81 GW and ahead of France with 17.382 GW [8]. As strong winds sweep across the country's 

mountains and plains, the Spanish government is providing substantial economic support for investment in 

wind energy technology [9]. As a result, the country's present wind turbine producers and wind farm owners, 

such as Gamesa Eólica which is the world's second-largest turbine manufacturer, Iberdrola which is the 

world's largest wind farm owner and operator), and Acciona Energa, have risen to the forefront of the 

worldwide wind energy industries which is the greatest wind farm builder and developer in the world). 

However, because wind energy is uncontrollable, rapid growth in wind power has had a growing impact on 

the power system's operational stability and security [10].   
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The active power generation of a typical wind turbine is a function of how fast the wind speed is, 

which varies continuously and introduces unfavorable uncertainties to the supplied power to the end user 

[11]. Power fluctuations can have a significant impact on system frequency, particularly when the wind 

farm is providing energy for islanded power systems or microgrids. Various forms of energy storage 

systems (i.e., battery energy storage systems (BESS)) can be operated in parallel to wind farms to mitigate 

the impact of wind uncertainties and variabilities [12]. The importance of energy storage comes into play 

when there is a surplus of power during high wind and low demand days and returns the power to the grid 

when there is a need for extra energy during a low wind or no wind and high demand days. The popularity 

and attention of projects based on variable renewable power and battery energy storage systems are rising 

globally [13]. In a competitive energy market, these projects are anticipated to serve as future electrical 

infrastructure for dispatchable power supply. 

 

Other techniques, such as operating the wind farm below the maximum power point with a certain 

reserve [14] using pitch angle control technique [15] and integrating demand side units (DSU) using smart 

grid applications [16], are also used in the literature. However, curtailing the wind farm for the purpose of 

system reserve allocation has a considerable impact on the total investment cost [17]. Different from the 

literature, in the study we examined two strategies to manage both the surplus amount of wind power to 

avoid wind curtailment and to deal with power variations. The total number of wind turbines spread across 

multiple geographical locations to reduce power intermittency of the net power generation. It is important 

to note that the analysis makes use of real wind data from numerous sites in Spain that are publicly available 

for research. The research, however, is adaptable enough to be replicated for other regions, such as Iraq's 

Kurdistan Region, whenever reliable weather data becomes available. The main contribution of this paper 

is as follows: 

 

1. A new technique for reducing wind power variability is proposed and tested using real wind data 

from genuine wind sites. 

2. The variable wind power is combined with storage devices and smart grid technologies to enable 

long-term secure wind power generation. 

3. The required energy storage capacity is evaluated with and without the integration of smart grids.  

 

The rest of this paper is organized as follows: Section 2 presents the model of wind turbine power. 

Analysis and results are provided in Section 3. Finally, conclusions with remarkable future works are given 

in Section 4.  
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2 MODELING WIND POWER 

In this section, the power curve of a typical wind turbine is graphically and mathematically 

investigated. A wind turbine's output power (𝑃𝑤𝑖𝑛𝑑) generation can be determined as per equation (1) [18]: 

 

𝑃𝑤𝑖𝑛𝑑 = 0.5 𝜌 𝐴𝑟 𝑣3                                             (1) 

 

where 𝐴𝑟 denotes the rotor swept area in (m), 𝜌 is the density of air in (kg/m2), 𝑣 is the speed of the 

wind. The output power of a wind turbine is proportional to the cube of the wind speed, which implies that 

even a minor decrease in wind speed reduces the power generation dramatically. As an example, raising 

the average wind speed from 6 m/s to 7 m/s results in 60% more power and a 36% increase in annual energy 

production from the same turbine. This is schematically shown using the wind power curve in Figure 1 [19].  

 

  

Figure 1: Characteristics of wind power generation versus speed of the wind for a typical wind 

turbine. 

 

The active power output of a wind turbine can be classified based on the region of wind speed 

operation, as shown in Figure 1. The operational regions are basically divided into three main regions 

namely, cut-in, rated, and cut-out wind speed. This is derived using equation (2). 
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𝑃𝑤𝑖𝑛𝑑 = {

𝑃𝑟𝑎𝑡𝑒𝑑 𝑓𝑜𝑟 𝑣𝑟 < 𝑣 ≤ 𝑣0

𝑃(𝑣) 𝑓𝑜𝑟 𝑣𝑖 < 𝑣 ≤ 𝑣𝑟

0 𝑓𝑜𝑟 𝑣𝑖 > 𝑣 > 𝑣0

                                 (2) 

where 𝑣𝑖, 𝑣𝑟, and 𝑣0 represent the cut-in, rated, and cut-off wind speeds, respectively. Below the cut-

in region, the wind turbine masses rotate extremely slowly, implying that the turbine will not be able to 

generate adequate active power and will not be required to remain in service. Above the cut-in regions, the 

wind turbine begins to generate power linearly with regard to wind speed until it reaches the maximum 

power point tracking, at which point the turbine generates the rated power. This remains constant until the 

cut-out region, where the wind speed exceeds 25m/s, requires the turbine to be disconnected from the 

national grid service. 

 

Different wind speeds necessitate turbine operation at varied pitch angles, resulting in variable 

mechanical power (𝑃𝑚𝑒𝑐ℎ) and torque (𝑇𝑤) characteristics that may be calculated using equations (3) and 

(4).  

𝑃𝑚𝑒𝑐ℎ = 𝑃𝑤𝑖𝑛𝑑𝐶𝑝(𝜆, 𝛽)                                                       (3) 

𝑇𝑤 = 0.5𝐶𝑝(𝜆, 𝛽)𝜌𝜋𝑅3𝑉𝑤
2/𝜆                                              (4) 

 

where 𝐶𝑝 denotes the turbine performance coefficient that is a factor of pitch angles and tip speed 

ratios, 𝜆 is the tip speed, 𝛽 is the pitch angle of the blades, 𝑅 refers to the radius of the turbine. The value 

of 𝜆 can be found from the turbine blade's peak speed to the speed of the wind, which is stated as (5). 

 

𝜆 = 𝜔𝑅/𝑣                                                                               (5) 

 

The performance coefficient increases when the wind speed rises. Nevertheless, with a further 

increase in wind speed, the performance coefficient falls. As a result, wind turbines can be considered to 

self-regulate their output power by lowering their efficiency when the wind speed is high and increasing it 

when the wind speed is low. The performance coefficient of a wind turbine for different pitch angles is 

graphically depicted in Figure 2.  
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Figure 2: Cp – λ characteristics of a wind turbine at different β [20]. 

 

3 ANALYSIS AND RESULTS 

A relatively large wind farm is considered in this study. It is assumed that there are a significant 

number of turbines within a particular wind farm. The intermittency within the wind power is examined 

considering the target required output power is 200 MW. This precise output power is merely an assumption 

for the purposes of this analysis; alternatively, different active powers can be employed. A further 

assumption is made considering that the wind farm has a load factor of 30% [21]. This assumption implies 

renewable energy is weather dependent and does not produce power continuously similar to conventional 

power plants. Thus, the farm's output power generation varies greatly as a result of the load factor. Using 

these assumptions, two scenarios have been developed to visualize the proposed strategy. 

 

3.1 First Scenario 

To make this study more practical and applicable, the V90-3.0MW Vestas wind turbine is being 

explored. The tower height of this turbine is 80 meters, which allows the wind turbine to produce a peak 

output power of 3 MW when the wind speed reaches 15 m/s [22]. The cut-in speed is set to 3.5 m/s while 

the cut-out wind speed is set to 25 m/s. In this analysis, real wind speed data is collected for a site named 

Tarifa in Spain for a whole duration of one year. Tarifa is among the world's optimum locations for wind 

power generation. The meteorological wind data is measured at 10 meters in height [23]. The following 

three steps are then used to calculate the potential output power of each wind turbine: 
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Step 1: Wind speed at 80 meters high is calculated from data obtained at 10 meters to meet Vesta's 

standard turbine constraints. The wind measurements are simply multiplied by a factor of 119.27 percent, 

as established by the Danish Wind Industry Association wind data converter, as per equation (6) [24].  

 

𝑤𝑠80 = 𝑤𝑠10 × 1.1927                                    (6) 

 

where ws80 denotes the wind speed at 80 m height in (m/s) and ws10 is the wind speed at 10 m height 

in (m/s). The wind speed measurement data for a complete duration of one year is shown in Figure 3. 

 

 

Figure 3: Tarifa meteorological wind speed data measured at 80 meters height. 

 

Step 2: The manufacturer's power curve, shown in Figure 4, is used to calculate the power produced 

by turbines at each wind speed. The manufacturer data sheet does not include the actual mathematical 

equation for representing this graph. This implies that alternative ways to linearize this figure that can 

capture wind turbine active power generation as an alternative calculation method to the model's original 

equation are required. Thus, a linear interpolation is used between wind speeds of 5.5 m/s and 15 m/s to 

represent the area where wind power does not change linearly with wind speed. Other techniques can also 

be used as in [25]. However, we use the following simple linear interpolation computation method: 

 

𝑦 − 𝑦1

𝑥 − 𝑥1
=

𝑦2 −  𝑦1

𝑥2 −  𝑥1
 ⇒

𝑦 − 0

𝑥 − 5.5
=

3 − 0

15 − 5.5 
       𝐿𝑖𝑛𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛:      𝑦 =  0.316𝑥 –  1.74                  (7) 

 

where 𝑦 is determined with respect to different 𝑥 values. From (7) all the output power points that 

are in the range of 5.5 m/s to 15 m/s can be determined. It is also worth noting that with a further increase 
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in the wind speed above 15 m/s, the output power remains constant at 3 MW. Although this equation can 

not precisely reflect the output power of the turbine, it can produce satisfactory results. The same step can 

be repeated to determine the power generation for each turbine for a duration of one year using both 

equation (7) and the power curve displayed in Figure 4. 

 

 

Figure 4: The standard power curve of Vestas V90-3.0MW turbine with a modified straight line. 

 

Equation (7) now becomes (8) and can be used to determine wind turbine output power at different wind 

speed measurements up to 80 meters.  

  

𝑃𝑜𝑢𝑡(𝑤𝑠80) = (𝑤𝑠80 × 0.316) − 1.74                                                     (8) 

 

As an example, the output power at 7.2 m/s per turbine can be calculated as below: 

 

𝑃𝑜𝑢𝑡(7.288 𝑚/𝑠) = (7.288 × 0.316) − 1.74 = 0.563 𝑀𝑊/𝑇𝑢𝑟𝑏𝑖𝑛𝑒 

 

For N number of turbines in each site, the output power generation can be calculated using (9): 

 

𝑃𝑇𝑜𝑡𝑎𝑙 = 𝑃𝑜𝑢𝑡 × 𝑁                                                                                         (9) 

 

For instance, if 130 wind turbines are assumed to be in operation, at the wind speed of 7.2 m/s, the aggre-

gated output power is as follows: 
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𝑃𝑇𝑜𝑡𝑎𝑙(130 𝑡𝑢𝑟𝑏𝑖𝑛𝑒𝑠) = 0.563 × 130 = 73.48 𝑀𝑊                                

 

This is one of the main steps of the analysis that is repeated 365 times to calculate the actual power gener-

ation of the wind farm over the time period of one year as shown in Figure 5. Each graph illustrates daily 

wind power generation for the proposed number of wind turbines for a complete duration of one month. It 

is important to note that wind power varies substantially, with some days having a cumulative power of 

more than 400 MW and others having wind power near to nil. For example, there are at least four days in 

January and February when wind power generation is nearly zero.  
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Figure 5: Daily power generation of 130 turbines over a course of one year (computed using 

equations (8) and (90). 

Furthermore, there is no clear comparison between these graphs over a year due to the variability of 

wind speed, which is weather dependent and changes so quickly. As can also be seen, claiming that wind 

power is high/low during winter/summer days is impossible. Interestingly, from January to April, there is 

a continuous wind wave that lasts for a number of days and results in continuous high power generation. 

For instance, from the 21st of January to the 28th, wind power remains constant at 400 MW while 

fluctuating the rest of the month. This means that such renewable power plants will have a daily surplus of 

energy that must be stored and used on days when wind production is extremely low. Another important 

observation from these graphs is that having low wind power for a few days in a row, like in December, 

necessitates large-scale energy storage devices to support renewable energy targets. Otherwise, 

conventional fossil-fuelled power plants must be restarted as an alternative solution to support power 

system demand, which will be both cost-effective and environmentally unfriendly. Other solutions include 

withdrawing active power from the network, as in smart demand response, or using demand response and 

grid-scale long-duration energy storage devices (i.e., hydrogen storage). 

 

Turning now to mathematical calculations of the wind power generation and using the actual daily 

wind data from Figure 3, the accumulated wind power (𝑃𝑜𝑢𝑡) generation of one turbine is calculated over 

a course of one year as follows: 

 

𝑃𝑜𝑢𝑡 = 547.296 𝑀𝑊 
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Given that each turbine's maximum ideal power generation is 3 MW, the total nameplate power might 

be calculated as follows: 

𝑃𝑚𝑎𝑥 = 3 𝑀𝑊 × 365 𝑑𝑎𝑦𝑠 = 1095 𝑀𝑊 

 

where 𝑃𝑜𝑢𝑡(𝑤𝑠80) is a real power generation for a turbine for a duration of one day for a wind turbine 

operating at 80 meters high, 𝑃𝑇𝑜𝑡𝑎𝑙 denotes the complete wind farm power generation in a day, 𝑁 is the 

total number of turbines within a farm, 𝑃𝑜𝑢𝑡  represents the real power of each turbine for a complete 

duration of one year, and 𝑃𝑚𝑎𝑥 is peak power generation for a turbine within one year. Using the amount 

of power generated in a time period, versus the amount of power that could have been generated, the load 

factor (LF) can be derived as in (10).  

𝐿. 𝐹 =
𝑃𝑜𝑢𝑡

𝑃𝑚𝑎𝑥
⁄                                                         (10) 

 

𝐿. 𝐹 =  547.296 𝑀𝑊
1095𝑀𝑊⁄ = 0.49 = 49% 

where 𝐿. 𝐹 is the load factor of a wind farm installed at the Tarifa site.  

 

Step 3: The objective of this research is to examine, if possible, for a wind farm to produce a 

maximum power of 200 MW for a duration of 292 days in a year. In another word, the farm can be shut 

down for 73 days for maintenance and technical issues. A total of 130 turbines are assumed to be in 

operation in order to meet the objective of the 200 MW target. Equations (8) and (9) are used in this step to 

compute the wind farm's daily output power for a complete duration of one year. 

 

The blue line in Figure 6 shows the power output of wind farms with 130 turbines, while the 

accumulated power and the 200 MW target are shown in brown and yellow, respectively. The accumulation 

power is the daily power generated by the farm minus 200 MW and can be maintained in the same way 

throughout the year. The plant's output power varies significantly, resulting in significant variance in 

accumulation over the course of a year. Similar power variations might be found even within a single day. 

As previously stated, the goal is to reduce wind power intermittency while also storing excess wind power 

during periods of strong wind power generation. This method will assist in maintaining a constant output 

power for a longer period of time. However, if the farm is turned off for 73 days for maintenance reasons, 

the accumulated electricity reaches 24 h x 3000 MW  = 72 MWh. However, storing this amount of energy 

can be a problem as it requires a significantly large scale of energy storage devices and that is not a practical 

option.  
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Figure 6: Combined daily output power for 130 wind turbines operating in parallel, daily 

accumulated power, and the target that we set for the plant. 

 

3.2 Second Scenario 

The distribution of wind turbines over multiple places rather than aggregating them in one region, as 

recommended in [26], is one way to reduce the plant's power intermittency. This strategy improves the total 

number of hours that the wind blows while decreasing the number of times when no energy is generated. It 

also minimizes the maximum instantaneous power generation, which reduces both the accumulated energy 

and the needed storage capacity. Figure 7 illustrates the preceding calculations performed to determine 

wind data at an altitude of 80 meters for two additional locations: Algeciras and Barbate, Spain. These two 

planned locations are close enough to the Tarifa site for the system operator to easily aggregate them as a 

single power plant. However, at different periods of the year, these locations experience varying wind 

speeds. To be more specific, Algeciras is located 11.26 kilometers northeast of Tarifa, while Barbate is 35 

kilometers northwest. The wind turbines are distributed across these three locations as follows: 40 turbines 

in the Algeciras site, 50 turbines in the Tarifa site, and 40 turbines in the Barbante. Tarifa has the largest 

load factor of the three locations, which explains why there are more turbines there. 
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Figure 7: Wind data from Barbate and Algeciras at an altitude of 80 meters. 

To compute daily power produced from each wind farm site, the previous equations and 

computational procedures are repeated. The output powers of the three locations are then aggregated and 

integrated into the power network as a large single provider. Figure 8 compares the output power of both 

scenarios for better clarification. It is apparent that the number of days when the plant is not producing has 

decreased dramatically meaning that the farm output power is now smoother as shown by the blue and red 

excel interpolation data lines. 

 

 

Figure 8: Wind farms output power for the aggregated wind turbines versus distributed over three 

locations, and the excel lines show how smoother is the average power. 
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The research is extended further to determine the required energy storage capacity if the accumulated 

energy is stored in an intelligent grid via DSU or without DSU. The size of storage systems must be kept 

as small as possible from an economic standpoint. To reduce storage capacity, this analysis proposes the 

integration of a smart grid and energy storage. The approximated storage capacity against the target energy 

for the proposed plant is shown in Figure 9. As observed, without the assumption of DSU, a maximum 

storage capacity of 70 GWh is required to store the extra energy over a year. Because the smart grid via 

DSU minimizes the wind farm's intermittency, the required energy storage capacity is reduced. As 

demonstrated in Figure 9, the accumulated energy curve does not contain any negative values, indicating 

that the wind farms can deliver 200 MW of active power for a full timeframe of 292 days without issue if 

integrated with storage or DSU. 

To put things into perspective, this paragraph presents some factual information on global electric 

vehicle trends. By the end of 2020, there were 10 million electric cars on the road around the world [27], 

following a decade of rapid growth. Despite a global dip in car sales due to the pandemic, which saw global 

car sales drop by 16% in 2020, electric car registrations increased by 41%. Existing rules around the world 

point to considerable growth in the following decade: according to the Stated Policies Scenario, the total 

number of electric vehicles (excluding two/three-wheelers) would reach 145 million in 2030, representing 

7% of the worldwide road vehicle fleet [27]. Higher power generation will be necessary in the European 

Union, for example, to meet the additional energy demand resulting from an 80 percent share of electric 

vehicles in 2050. Electric vehicles will account for roughly 4-5% of total electricity consumption in Europe 

by 2030, and 9.5% by 2050, up from 0.03% in 2014 [28]. Without a smart grid, total global energy storage 

requirements are expected to rise from 189 GW capacity to 305 GW by the end of 2050; however, this 

number is anticipated to decline to 122 GW from 260 GW if smart grids, electric vehicles, and demand 

response programs are integrated [29]. 
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Figure 9: Required storage device to store the accumulated energy with and without a smart grid, 

and the required energy target. 

 

Turning now to our model, one can expect that if the wind turbines are divided into three areas, they 

will be able to power a considerable number of electric vehicles under the scenario described previously. 

These cars can store surplus energy during periods of low demand and then release it during periods of high 

demand, similar to energy storage systems. As long as electric vehicles are accessible, this may be cheaper 

than turning off and curtailing wind power generation. As illustrated in Figure 9, the accumulative energy 

should not go below a negative value as wind power is assumed to attain the objective energy storage 

requirement within 292 days. The energy differential between the two lines can be used to calculate the 

predicted reduction in storage capacity owing to smart grid device energy consumption. As shown, a large 

amount of energy (i.e., 21.12 GWh) can be utilized by the smart grid without pushing the accumulative 

curve into the negative area of the graph. It is vital to remember that energy cannot be delivered to the smart 

grid before day 90, as this would cause the accumulative curve to collapse below the required target limits. 

Finally, there will be 12 GWh of excess power in the storage by the end of the year, which can be used at 

the start of the following year. 

 

4 CONCLUSIONS 

Renewable energy resources, particularly wind energy, have an enormous potential to play a significant 

role in the current electricity generation to meet the ever-increasing greenhouse gas emissions and demand 

escalation. However, one of the main issues with the deployment of grid-scale renewable energy sources is 

the output power's variability and intermittency, which significantly impact the power transmission to the 

end user. Fortunately, the continuous increase in renewable energy coincides with the development of smart 
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grids such as electric vehicles and battery energy storage systems. All these systems can be integrated to 

reduce renewable power uncertainties. This research examined a radically different technique for 

minimizing wind farm output power variability. As a case study, we used data from three wind-rich 

geographical sites in Spain. The proposed technique divides the number of contracted wind turbines over 

three locations rather than combining them in one. The analysis results showed that the power variability 

could be significantly reduced. However, it was discovered that the required storage could be quite 

enormous. Thus, smart DSU and energy storage devices are projected to consume extra energy to smooth 

the output power further. This increased wind farms' power variability and allowed them to store excess 

energy during high wind days and use it during low wind days. 

REFERENCES 

[1] H. Qudrat-Ullah, “A review and analysis of renewable energy policies and CO2 emissions of 

Pakistan,” Energy, vol. 238, p. 121849, 2022, doi: 10.1016/j.energy.2021.121849. 

[2] I. Manisalidis, E. Stavropoulou, A. Stavropoulos, and E. Bezirtzoglou, “Environmental and Health 

Impacts of Air Pollution: A Review,” Front Public Heal., vol. 8, no. 14, 2020, doi: 

10.3389/fpubh.2020.00014. 

[3] R. Ali, A. Kuriqi, and O. Kisi, “Human-environment natural disasters interconnection in China: A 

review,” Climate, vol. 8, no. 4, pp. 1–28, 2020, doi: 10.3390/cli8040048. 

[4] D. Al Kez, “Power system dynamics with increasing distributed generation penetrations,” Queen’s 

University Belfast, PhD Thesis, 2022. 

[5] B. V. Mathiesen et al., “Smart Energy Systems for coherent 100% renewable energy and transport 

solutions,” Appl. Energy, vol. 145, pp. 139–154, 2015, doi: 10.1016/j.apenergy.2015.01.075. 

[6]  and A. K. S. Prem Kumar Naik, Nirmal-Kumar C. Nair, “Impact of reduced inertia on transient 

stability of networks with asynchronous generation,” Int. Trans. Electr. ENERGY Syst., vol. 26, no. 

April 2015, pp. 175–191, 2015, doi: 10.1002/etep.2079. 

[7] S. Ahmed et al., “Renewables Global Status Report,” Paris, France, 2011. [Online]. Available: 

http://www.ren21.net/Portals/97/documents/GSR/REN21_GSR2011.pdf. 

[8] IRENA, “Renewable energy statistics 2021,” International Renewable Energy Agency, Abu Dhabi, 

United Arab Emirates, 2021. 

[9] C. Edmunds, S. Martín-Martínez, J. Browell, E. Gómez-Lázaro, and S. Galloway, “On the 

participation of wind energy in response and reserve markets in Great Britain and Spain,” Renew. 

Sustain. Energy Rev., vol. 115, no. September, p. 109360, 2019, doi: 10.1016/j.rser.2019.109360. 



 

13-203 

[10] B. Hoseinzadeh, F. Blaabjerg, Z. Chen, and R. Teodorescu, “Emergency wind power plant re-

dispatching against transmission system cascading failures using reverse tracking of line power 

flow,” IET Gener. Transm. Distrib., vol. 14, no. 16, pp. 3241–3249, 2020, doi: 10.1049/iet-

gtd.2019.1950. 

[11] N. Nguyen and J. Mitra, “An analysis of the effects and dependency of wind power penetration on 

system frequency regulation,” IEEE Trans. Sustain. Energy, vol. 7, no. 1, pp. 354–363, 2016, doi: 

10.1109/TSTE.2015.2496970. 

[12] X. Wu, X. Hu, X. Yin, and S. J. Moura, “Stochastic Optimal Energy Management of Smart Home 

With PEV Energy Storage,” IEEE Trans. Smart Grid, vol. 9, no. 3, pp. 2065–2075, 2018, doi: 

10.1109/TSG.2016.2606442. 

[13] P. Saini and L. Gidwani, “An investigation for battery energy storage system installation with 

renewable energy resources in distribution system by considering residential, commercial and 

industrial load models,” J. Energy Storage, vol. 45, no. October 2021, p. 103493, 2022, doi: 

10.1016/j.est.2021.103493. 

[14] H. Luo, Z. Hu, H. Zhang, and H. Chen, “Coordinated Active Power Control Strategy for Deloaded 

Wind Turbines to Improve Regulation Performance in AGC,” IEEE Trans. Power Syst., vol. 34, no. 

1, pp. 98–108, 2019, doi: 10.1109/TPWRS.2018.2867232. 

[15] R. El Otmani and E. Otmani, “MPPT and pitch angle control for wind energy conversion system 

pitch angle control for wind energy conversion system pitch angle control for wind energy 

conversion system of selected sites in pitch angle control for wind energy conversion system MPPT 

and ,” IFAC Pap., vol. 55, no. 12, pp. 109–114, 2022, doi: 10.1016/j.ifacol.2022.07.296. 

[16] F. Conte, M. C. Di Vergagni, S. Massucco, F. Silvestro, E. Ciapessoni, and D. Cirio, “Synthetic 

Inertia and Primary Frequency Regulation Services by Domestic Thermal Loads,” 2019, doi: 

10.1109/EEEIC.2019.8783679. 

[17] G. Liu et al., “Emergency Active Power Control Considering Power Reserve for Direct Driven Wind 

Power System Under Overspeed Power Shedding Operation,” Proc. - 2021 IEEE Sustain. Power 

Energy Conf. Energy Transit. Carbon Neutrality, iSPEC 2021, pp. 3153–3158, 2021, doi: 

10.1109/iSPEC53008.2021.9736000. 

[18] S. Shokrzadeh, M. Jafari Jozani, and E. Bibeau, “Wind turbine power curve modeling using 

advanced parametric and nonparametric methods,” IEEE Trans. Sustain. Energy, vol. 5, no. 4, pp. 

1262–1269, 2014, doi: 10.1109/TSTE.2014.2345059. 

[19] B. Manobel, F. Sehnke, J. A. Lazzús, I. Salfate, M. Felder, and S. Montecinos, “Wind turbine power 



 

13-204 

curve modeling based on Gaussian Processes and Artificial Neural Networks,” Renew. Energy, vol. 

125, pp. 1015–1020, 2018, doi: 10.1016/j.renene.2018.02.081. 

[20] C. I. Mart, J. D. Twizere-bakunda, D. Lundback-momp, S. Orts-grau, F. J. Gimeno-sales, and S. 

Segu, “Small Wind Turbine Emulator Based on Lambda-Cp Curves Obtained under Real Operating 

Conditions,” Energies, vol. 12, no. 13, 2019. 

[21] LuvSide GmbH, “Capacity factor of wind turbine: what influences electricity generation & what 

you should know about it,” 2020. https://www.luvside.de/en/capacity-factor-wind-turbine/ 

(accessed Mar. 01, 2022). 

[22] VESTAS, “Proven technology to safeguard your investment - V90 3MW,” 2011. 

https://pdf.archiexpo.com/pdf/vestas/v90-30-mw/88087-281441.html (accessed Jan. 15, 2022). 

[23] Eltiempo, “Forecast History for Spain.” http://en.eltiempo.es/tarifa.html?v=historico (accessed Jun. 

12, 2021). 

[24] Danish Wind Industry Association, “Wind Turbine Power Calculator,” 2003. 

http://drømstørre.dk/wp-content/wind/miller/windpower web/en/tour/wres/pow/index.htm 

(accessed Sep. 08, 2021). 

[25] Y. Wang et al., “Sparse heteroscedastic multiple spline regression models for wind turbine power 

curve modeling,” IEEE Trans. Sustain. Energy, vol. 12, no. 1, pp. 191–201, 2021, doi: 

10.1109/TSTE.2020.2988683. 

[26] Y. Cai and F. Br, “Wind power potential and intermittency issues in the context of climate change,” 

Energy Convers. Manag., vol. 240, p. 114276, 2021, doi: 10.1016/j.enconman.2021.114276. 

[27] International Energy Agency, “Global EV Outlook 2021 - Accelerating ambitions despite the 

pandemic,” Paris, France, 2021. 

[28] European Environment Agency, “Electric vehicles and the energy sector - impacts on Europe ’ s 

future emissions,” Copenhagen K, Denmark, 2021. 

[29] InternatIonal energy agency, “Modelling Load Shifting Using Electric Vehicles in a Smart Grid 

Environment,” Paris, France, 2010. 

 

 

 


