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ABSTRACT 
Electricity Power Consumption Forecasting (EPCF) plays an essential role in global electricity distribution systems that has a significant 

impact on the operation, control, and planning for the production and distribution of electricity. Due to the complexity, and uncertainty 

of electricity consumption, especially when the amount of load consumed during different hours is not the same, performing forecasting 

by using the classical method is inaccurate. To strengthen the efficiency, the time series method that uses a fuzzy approach based on 

refined entropy is presented in the upcoming article. First, given the specified features, the minimization principle approach of entropy 

(MPAE) is pursued to define the longitude of each interval in the world of discourse. Secondly, a fuzzy relation matrix of time-invariant 

is constructed according to the first-order model of fuzzy time series, and the minimum fixed amount of time that the data approach the 

steady state is obtained using the entropy of the fuzzy set, respectively. Eventually, the forecast results are calculated based on the 

operation of the maximum combination and the principle of full membership. To show the whole forecasting process, hourly data from 

July 2022 to September 2022 in Sulaymaniyah / Iraq province is used. Results are compared to the traditional statistical (ARIMA) 

model, and it indicates that the mean squared error and other criteria of the forecasting error in the entropy based on the fuzzy method 

are significantly better than the traditional statistical model. 

https://creativecommons.org/licenses/by-nc/4.0/ 
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1. Introduction 

Electricity power Consumption Forecasting (EPCF) plays a 

significant role in the formulation of energy policies. It contains 

a crucial impact on the control of resources within the production 

of electrical energy. Due to the impossibility of storing it, it is 

considered one of the sensitive issues within the development 

requirements of any country.  

In the past years, many forecasting methods have been utilized in 

this field, like classical ARIMA models. For instance, Yuan 

(2016) expressed that the ARMA model's fitted values compared 

to Gray Model (1,1), combined Gray Model (1,1) ARMA 

methods, which reacts less to vacillations[1]. and Mahia (2019) 

suggested that that is superior to expand the ARMA time series 

model for complex time series data[2]. However, because of the 

complexity and ambiguity within the electricity consumption, the 

accuracy and efficiency of those methods are very low. They 

cannot be used as a stable model in this field (Nichiforov,2017)[3]. 

For this reason, to extend the efficiency and accuracy of 

forecasting in this field, a technique of forecasting fuzzy time 

series of entropy productivity has been used[4]. It is noteworthy 

that Liang (2010) proposed in the forecast of Stoke Market to 

produce the minimization principle approach of entropy linguistic 

values that can simplify and accelerate the extraction of the rough 

set algorithm. Furthermore, in the view of Hsue Cheng (2005), 

The MPAE of the discourse is based on the character of data. It 

is considered an excellent way for those decision-makers who 

have minimal data[5,6]. MPAE aims to effectively convert 

accurate data into fuzzy in an objective and solving a problem 

manner. Therefore, the purpose of a constant time index is to form 

an optimal fuzzy relationship. These issues and the efficiency and 

accuracy of the proposed methodology are discussed in part 2, 

subsequently analyzed and considered carefully, and the results 

are compared with those of the classical (ARIMA) method in 

section 3.  The final portion, section 4, presents the conclusions. 

2. Material and Methods 

2.1 Entropy and its Dependence on probability distribution in 

Determining the information content 

The fundamental idea in classical information theory is Shannon's 

entropy. Claude Shannon (1948) founded information theory by 

publishing an article, and he is known as the pioneer of 

information science. Shannon's entropy Y quantitatively 
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determines the average amount of information obtained from the 

random variable (y), or the measure of ambiguity about Y before 

knowing its value. These two points of view are complementary 

to each other. A random variable's informational value should not 

be modified by the variety of labels it might have. if a random 

variable has been used as a symbol to represent different possible 

distributions, the information obtained should not depend on the 

type of that variable. For this reason, according to the definition, 

the entropy of a random variable (Y) is a function of the 

probability of various possible values that the random variable 

(Y) can take. Shannon showed that the entropy, 𝑝1,p
2
,...,p

𝑛
, as a 

function of the probability distribution corresponding to this 

probability distribution, can be defined as follows[8-10]. 

𝐻(𝑌) ≡ 𝐻(𝑝1, . . . , 𝑝𝑛) ≡ − ∑ 𝑝𝑦 𝑙𝑜𝑔 𝑝𝑦
                                                      (1) 

2.2 Minimum Entropy Principle Approach 

The entropy of a probability distribution is a measurement of its 

level of ambiguity. Whenever a system is in thermodynamic 

equilibrium, its entropy will reach its maximum value. Otherwise, 

the entropy will not be a significant value. Assume that a 

threshold value between 𝛼 and 𝑏 is desired for a sample. 

For the area [𝑎, 𝑎 + 𝜏]  and [𝑎 + 𝜏, 𝑏] , an entropy equation is 

given for each value for y, and we designate the beginning area p 

and the following area q. The formula for entropy at any value of 

(y) in the area among (𝑎, 𝑏) is: 

S(𝑦) = p(𝑦). S𝑝(𝑦)+q(𝑦). S𝑞(𝑦)                                                  (2) 

∴ 
S𝑝(𝑦) = -[𝑝1(𝑦) 𝑙𝑛 𝑝1 (𝑦)+p2(𝑦)lnp2(𝑦)]                                (3) 

S𝑞(𝑦) = -[𝑞1(𝑦)lnq1(𝑦)+q2(𝑦)lnq2(𝑦)]                                   (4)  

Where 𝑝𝑗(𝑦) , and 𝑞𝑗(𝑦)  are conditional probabilities that the 

class j sample is within the area    [𝑎, 𝑎 + 𝜏]  and [𝑎 + 𝜏, 𝑏] , 

successively, p(y) and q(y) are probabilities that every sample is 

within the area [𝑎, 𝑎 + 𝜏]  and [𝑎 + 𝜏, 𝑏] , respectively, then 

according to the general law of probability, the sum of p(y) and 

q(y) is equal to one. 

A value of y that offers the minimum entropy, is the optimum 

threshold value. An entropy estimates of 𝑝𝑗(𝑦), 𝑞𝑗(𝑦),  p(y) and 

q(y) are computed as the following: 

𝑝𝑗(𝑦) =
(𝑛𝑗(𝑦) + 1)

(𝑛(𝑦) + 1
)                                                                      (5) 

𝑞𝑗(𝑦) =
(𝑁𝑗(𝑦) + 1)

(𝑁(𝑦) + 1)
                                                                       (6) 

𝑝(𝑦) =
𝑛(𝑦)

𝑛
                                                                                      (7) 

𝑞(𝑦) = 1 − 𝑝(𝑦)                                                                               (8) 

Where; 

𝑛𝑗(𝑦) is the number of class j samples in the area [𝑎, 𝑎 + 𝜏]. 

𝑛(𝑦) is the total number of samples in the area [𝑎, 𝑎 + 𝜏]. 

𝑁𝑗(𝑦) the number of class j samples in [𝑎 + 𝜏, 𝑏]. 

𝑁(𝑦) is the total number of samples in the area [𝑎 + 𝜏, 𝑏]. 

Moreover, (n) is the total number of samples in[𝑎, 𝑏]. 

Entropy values are calculated for every position of (y), when the 

(y) moves in[𝑎, 𝑏]. The value of (y) with the minimum entropy is 

named the Central Threshold Point (CTP). The secondary 

threshold values identified as sections one and two will be 

determined through the iterative partition procedure. To extend 

the last partition, the tertiary threshold values identified as THR1, 

THR2, THR3, and THR4 will be determined[11,12]. 

2.3 The Time Index of Minimum Invariant 

In the theory of information, if a system has a feature or 

characteristic that does not change with a particular 

transformation, it means that the system has symmetry 

corresponding to that feature and it is in a stable state. It is also 

necessary to mention that in a fuzzy system, when the system's 

fuzzy degrees remain constant as it transits from one state to the 

next, it is said to be in a steady state. Thus, to determine a system's 

degree of fuzziness and measure the time (T), the entropy notion 

can be used where the data are approaching a steady state[13,14]. 

 

Definition.1: In a fuzzy set, the entropy is defined as follows 

 𝐻(�̃�) = 𝐾 ∑ 𝜇�̃�(𝑌𝑖)

𝑚

𝑖=1

. ln𝜇�̃�(𝑌𝑖)                                                    (9) 

𝑤ℎ𝑒𝑟𝑒 the fuzzy set is   
�̃�

= {(𝑦, 𝜇𝐵(𝑌))}                                                                                (10) 

𝑑(�̃�) = 𝐻(�̃�) + 𝐻(�̃�𝑐)                                                                 (11) 

Where m is the number of units supporting �̃� ,  �̃�𝐶  is the 

complement of �̃�, and K is a positive constant.[15] 

Definition 2: Suppose g (t) occurs only by g (t -1) and is defined 

by g (t-1) = g(t); then there is a relationship of fuzzy between g 

(t) and g (t-1) and can be expressed as the Equation of fuzzy 

relational: 

𝑔(𝑡) = 𝑔(𝑡 − 1) 𝑜 𝑅(𝑡, 𝑡 − 1)                                                        
(12)  

Where ‘‘o ’’ is the Max – Min composition operator. The relation 

R is called a first-order model of g (t). Further, if fuzzy relation R 

(t, t -1) of g(t) is independent of time t, that is to say, for different 

times t1 and t2, R (t1, t1- 1) = R(t2, t2 - 1), then g(t) is called a time-

invariant fuzzy time series.[16,17] 

Definition 3: Let R be an (n×n) fuzzy relation matrix; the mth 

order matrix of fuzzy relation 𝑅𝑚 is as described as follows: 

𝑅𝑚 = 𝑅𝑚−1  ○ 𝑅                                                                       (13) 

Where ‘○’ is the ‘max-min’ factor. 

According to Hsue Cheng (2005), at steady state, it has 

𝑑(𝑅T+1)=d(𝑅𝑇), TÎ[1,m], subsequently supposes K = 1, we can 
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conclude model (15) to calculate the most negligible value of T 

as below.  

1

min   T

s.t     r r        1,2,3,...,                        (14)

        0 1

T T

ji ji ji n

r

+ = 

   

By solving model (14), we can get the objective value of T to get 

the value of [
𝑛

𝑡
]+1 relations matrices of time-invariant per T, 

where [
𝑛

𝑡
] is the supposed value. After that, by applying the 

relation matrix of fuzzy
( )KR , where K = 1, 2,…,[

𝑛

𝑡
]+1 the 

forecasting result G(t) may be achieved by input fuzzy data iB
 

and i =1,2,…,n. as below model.         

𝐺(𝑥) = �̃�𝑖 ○  R(𝐾)       ∀ (t -1) ≤ K *T                                   (15) 

Where ‘○’ is the ‘max-min’ factor. K = 1,2,…,[
𝑛

𝑡
]+1[18,19]. 

2.4 The Proposed Entropy-based Fuzzy Times Series Method 

In this part, according to the approach of the minimum entropy 

principle and the minimum value of the constant time index T, 

the details and proposed manner processes of the proposed 

entropy-based fuzzy time series method are as the following; [19,20] 

1st step: Describing the universe under study. In such a way that 

Umin is the lowest and UMax is the highest amount of time series 

data, as well as u1 and u2 are two non-zero positive numbers, and 

we can determine it as follows 

U= [Umin-u1, Umax+u2]                                                               (16) 

2nd step: The existing data must be divided into different classes, 

but due to the unique characteristics of entropy, there is no 

particular rule for determining the number of classes and limiting 

each class. 

3rd step: Sorting the studied data in an ascending manner and 

selecting an intermediate value of (y) between two adjacent 

values that represents a Central Threshold Point (CTP). 

4th step: To determine the threshold value, calculating each 

potential threshold and the desired value will be applied to the 

equations (1-8). To determine the seventh value, each of the 

potential threshold points must be selected so that the entropy 

value is minimized.  

This process will continue until all seven thresholds are 

determined. Therefore, the universe under study is divided into 

seven unequal overlaps, where 

1 1 1 2 1 2 3 1

4 2 3 5 1 6 3 4

7 2 2

[ , ]  ,     d [ , ]  ,    d [ , ]  , 

 d [ , ]  ,         d [ , ]  ,      d [ , ] , 

 [ , ] 

MIN

MAX

d U u SEC THR THR SEC CTP

THR THR CTP SEC THR THR

d SEC U u

= − = =

= = =

= +
 

5th step: Identify the fuzzy sets in the universe under study. The 

linguistic values are defined as follows  

F1: Not many consumption                 F5: Very many consumption 

F2: Not too many consumption           F6: Too many consumption 

F3: Many consumption                  F7: Too many many consumption 

F4: Many many consumption 

And each set of fuzzy  �̃�𝑖   where i= 1,2,3,...,7 is defined as 

1
1 2 3 4 5 6 7

2
1 2 3 4 5 6 7

3
1 2 3 4 5 6 7

4
1 2 3 4 5 6 7

5
1 2 3 4 5 6 7

0.5 0 0 0 0 01 { , , , , , , }

0.5 0.5 0 0 0 01{ , , , , , , }

0 0.5 0.5 0 0 01{ , , , , , , }                  (17)

0 0 0.5 0.5 0 01{ , , , , , , }

0 0 0.5 0.5 0 01{ , , , , , ,

B
d d d d d d d

B
d d d d d d d

B
d d d d d d d

B
d d d d d d d

B
d d d d d d d

=

=

=

=

=

6
1 2 3 4 5 6 7

7
1 2 3 4 5 6 7

}

0 0 0 0.5 0.5 01{ , , , , , , }

0 0 0 0 0 0.5 1 { , , , , , , }

B
d d d d d d d

B
d d d d d d d

=

=
 

 

6th step: For building the membership function, the length of 

intervals must be identified through the fourth step's thresholds 

as the triangular fuzzy number midpoint. 

7th step: The phase of fuzzy in the time series data, using the 

adapted membership function in the previous stages, is calculated 

by the grade of the membership of each data studied and then 

specified to a desired linguistic value. 

8th step: The fuzzy set concept will define the most minor extent 

of the time-invariant value (T).  First, the fuzzy relation matrix 

must be created. After that, the index of time (T) will be marked 

for invariant time relationships. 

9th step: By considering each data's linguistic value, it is possible 

to obtain the logical fuzzy relations of the data, which are shown 

as 𝑖 → 𝑗. Where i and j are two consecutive states. These relations 

are obtained through the matrices of fuzzy relations 𝑅𝐾 . Where 

K = 1,2,…,[
𝑛

𝑡
]+1 . Any fixed (invariant) time can be used to 

obtain the relation matrices in a fuzzy manner. 

10th step: Computing the outputs, if the data under study y(t) 

where t = [1,2,...,m] , is set to the fuzzy set Bi, to get the 

forecastable value 𝑌(𝐾 + 1), based on the knowledge obtained 

from the previous steps, and the following relationship will be 

used. 

𝑌(𝐾 + 1) = 𝐵𝑖 ∘ 𝑅[
𝑡
𝑇

+1]      t ∈ [1,2,...,m]                                  (18) 

11th step: To convert the obtained results, which are in the form 

of fuzzy sets, they must be converted into fundamental values. 

Method of Q, Song (1993) has been used for this conversion.  

2.5 Autoregressive Integrated Moving Average Processes 

(ARIMA) 
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One of the most well-known time series modeling techniques is 

the ARIMA model, commonly referred to as the Box-Jenkins 

model. It is primarily used to forecast time series using the tenet 

that a variable's future value is a linear function of previous 

observations and random errors. The process of creating a time 

series takes the following form: 

𝑦𝑡 = 𝜃0 + 𝜑1𝑦𝑡−1 + 𝜑2𝑦𝑡−2 + ⋯ + 𝜑𝑝𝑦𝑡−𝑝 + 𝜀𝑡 − 𝜃1𝜀𝑡−1 −

𝜃2𝜀𝑡−2 − ⋯ − 𝜃𝑞𝜀𝑡−𝑞                                                                (19) 

Where  

yt is the time series value 

φi(i = 1,2,3, … , p) is the Moving average parameters 

θj(j = 1,2,3, … , q) is the Autoregressive parameters  

εt is a random process with zero mean and σ2 variance. 

2.6 Comparison with the Classical Method (ARIMA) 

To check the forecast power of the methods used, four standard 

criteria in this field were used. [16,21] 

The first criterion is the average of errors (ME), which is the 

average of all prediction errors for a data group and is defined as 

follows. 

𝑀𝐸 =
∑ 𝑒𝑖

𝑁
⁄                                                                               (20)                      

Where 𝑒𝑖 is the difference between the forecasted value and its 

actual value, and N is the number of forecasts. 

The second criterion is the mean percentage value of errors (x). 

In this criterion, the mean percentage value of the errors is used 

for each of the forecasts. That is mean 

𝑀𝑃𝐸 =
100%

𝑁
∑(

𝑒𝑖
𝑦𝑖

⁄ )                                                               (21)       

Where N is the number of forecasts, and 𝑒𝑖  is the difference 

between the forecasted and actual value. 

The third criterion is the mean absolute value of the error 

(MAPE). This criterion is similar to (MAE), with the difference 

that the error is expressed as a percentage. 

𝑀𝑃𝐴𝐸 =
100

𝑁
∑|𝑒𝑖|                                                                    (22) 

The fourth criterion is the mean squared of error (MSE), which is 

expressed as follows. 

𝑀𝑆𝐸 =
∑ 𝑒𝑖

2

𝑁
⁄                                                                            (23)       

3. Result and Discussion 

3.1 Implementation of the Suggested Method 

This section will utilize the hourly power consumption data for 

the Sulaymaniyah province that was prepared from July to 

September 2022, and it will execute the analysis based on the 

previous section's procedures. The steps in the preceding section 

can be applied in the following manner. 

1. According to the studied data, the maximum and minimum 

values are 441.55 and 911.73, respectively. Where 𝑢1=1.55, 

and 𝑢2= 0.27  for simplifying in the calculation, thus, the 

discourse universe is U [440, 912]. 

2. By consulting with energy consumption experts, the studied 

data has been divided into three different groups in terms of 

consumption, low = 1, medium = 2, and high = 3, as 

described in Table 1. Due to the large amount of data, the 

link of all data can be seen in the annex A.1.

Table 1: Part of the hourly data based on the desired classes (1-7-2022 to 31-9-2022). 

Hourly time Data Classes Hourly time Data Classes Hourly time Data Classes 

1 AM 717.93 1 11 AM 805.88 2 9 PM 742.85 3 

2 AM 728.18 1 12 AM 732.80 2 10 PM 713.02 1 

3 AM 749.05 1 1 PM 732.80 2 11 PM 705.42 1 

4 AM 771.93 1 2 PM 722.88 2 5 PM 883.71 2 

5 AM 781.35 1 3 PM 745.43 2 6 PM 885.75 3 

6 AM 827.02 3 4 PM 766.38 2 7 PM 889.10 3 

7 1M 799.45 3 5 PM 752.03 2 8 PM 889.28 3 

8 AM 777.72 3 6 PM 727.22 3 9 PM 891.40 3 

9 AM 794.88 2 7 PM 726.70 3 10 PM 898.21 1 

10 AM 790.92 2 8 PM 732.23 3 11 PM 907.65 1 

Sorting the data and calculating the (CTP). 

Dividing the studies data into the seventh part by equations (1-8) to find the seven thresholds value as shown in 

the following table. 

Table 2: The Thresholds Points. 

Border THR1 1st section THR2 CTP THR3 2nd section THR4 

Value 464.48 502.85 540.16 561.81 714.41 821.6 851.58 

According to equations (11-19), define the seven linguistic values. 
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To identify the triangular fuzzy number midpoint and 

determine the membership function, the threshold 

value in step (4) has been used and shown in Table 3.

Table 3: The Membership Function of MPAE. 

Linguistic Value Lower. B Midpoint Upper. B Longitude 

B1: Not many consumptions 440 464.4833 502.8500 62.8500 

B2: Not too many consumption 464.4833 502.8500 540.1667 75.6834 

B3: Many consumption 502.8500 540.1667 561.8167 58.9667 

B4: Many many consumption 540.1667 561.8167 714.4167 174.2500 

B5: Very many consumptions 561.8167 714.4167 821.6000 259.7833 

B6: Too many consumption 714.4167 821.6000 851.5832 137.1665 

B7: Too many many consumptions 821.6000 851.5832 912 90.4000 

Fuzzing the data under study, based on the 

membership function values identified in the previous 

step, and trying to find the dignity of membership for 

each data is then allotted to a proportional linguistic 

value, and a part of it is shown in Table 4. (The 

complete results have been shown in the annex A.2). 

Table 4: Part of Fuzzified Data Based on Minimum Entropy. 

Time 1B  
2B  3B  

4B  5B  
6B  

7B  State Relation 

1 AM 0 0 0 0 0.289425 0.710575 0 6B
 

----- 

2 AM 0 0 0 0 0.484915 0.515085 0 6B
 6 6B B→

 

3 AM 0 0 0 0 0.351011 0.648989 0 6B
 6 6B B→

 

4 AM 0 0 0 0 0.88056 0.11944 0 5B
 6 5B B→

 

5 AM 0 0 0 0 0.265319 0.734681 0 6B
 5 6B B→

 

6 AM 0 0 0 0.990825 0.009175 0 0 4B
 6 4B B→

 

7 AM 0 0 0 0.941022 0.058978 0 0 4B
 4 4B B→

 

8 AM 0 0 0 0.064439 0.9355610 0 0 5B
 4 5B B→

 

9 AM 0 0 0 0.808759 0.191241 0 0 4B
 5 4B B→

 

10 AM 0 0 0 0 0.093157 0.906843 0 6B
 5 6B B→

 

According to the sets of fuzzy that were defined in the previous 

step, and based on the matrix of the below fuzzy relation  

 

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 4 5 6 73

1 2 4 5 6 73

1 2 4 5 6 73

1 2 4 5 6 73

1 0.5 0 0 0 0 0

0.5 1 0.5 0 0 0 0

0 0.5 1 0.5 0 0 0

0 0 0.5 1 0.5 0 0      

0 0 0 0.5 1 0.5 0

0 0 0 0 0.5 1 0.5

0 0 0 0 0 0.5 1

d d d d d d d

d d d d d d d

d d d d d d d

d d d d d d dB

d d d d d d d

d d d d d d d

d d d d d d d

 
 
 
 
 

=  
 
 
 
 
 

    (23)

 

Then, because  

𝐵 ∘ 𝐵 = 𝐵2 ≠ 𝐵    ,  𝐵2 ∘ 𝐵 = 𝐵3 ≠ 𝐵2   …   , 𝐵𝑛−1 ∘ 𝐵 = 𝐵𝑛

≠ 𝐵𝑛−1  

where n is integer  

According to model (15), for the time-invariant relationship, the 

time index of T has been taken where T=5. 

By Equation (23), the forecasted outcome in the fuzzy form is 

computed and converted to the real numbers. Where part of them 

is shown in Table (5). (The complete results have been shown in 

the annex A.3).
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Table 5: Part of the Forecasted Result. 

Time 1B  
2B  3B  

4B  5B  
6B  

7B  Fuzzy out put Real out put 

1 AM --- --- --- --- --- --- --- --- --- 

2 AM 0 0 0 0 0.12846 0.87154 0 6B  717.9333 

3 AM 0 0 0 0 0.323173 0.676827 0 6B  728.1833 

4 AM 0 0 0 0 0.536703 0.463297 0 5B  749.05 

5 AM 0 0 0 0 0.793469 0.206531 0 5B  732.80 

6 AM 0 0 0 0 0.590669 0.409331 0 5B  722.8833 

7 AM 0 0 0 0 0.750856 0.249144 0 5B  745.4333 

8 AM 0 0 0 0 0.713842 0.286158 0 5B  766.3833 

9 AM 0 0 0 0 0.8535 0.1465 0 5B  752.0333 

 

3.2 Modeling Electricity Consumption Using the ARIMA Model 

Since the condition of applying these models and obtaining 

reliable predictions based on them is the significance of the 

variable under investigation, the significance of the trend of 

electricity consumption in the period, time (1-7-2022 to 31-9-

2022), as shown in Figure 1, has been obtained with a one-time 

difference. After checking the stability, it is important to 

determine the rank of p and q in the ARIMA model; for this 

purpose, the autocorrelation function (ACF) and partial 

autocorrelation function (PACF) have been used. Therefore, the 

ARIMA models (2,1,0) have been chosen as the appropriate 

models, with AR1= 0.0880 and AR2 = -0.0662 as shown in below  

𝑦𝑡 = 788.25 + 0.0880 𝑦𝑡−1 − 0.0662𝑦𝑡−2 + 𝜀𝑡 

 

Figure 1: Time sequence of electricity consumption plot. 

3.3. Performance Evaluation of Entropy-based Method and 

ARIMA Method for Forecasting 

To show the effectiveness of the entropy-based forecast model, 

the forecasting performance based on this method and the 

ARIMA model using the performance evaluation criteria 

presented in relations (19 –23) is examined, and the results are 

presented in Table (6).

Table 6: Comparison of the Different Forecasting Methods. 

 ME MPE MAPE MSE 

ARIMA 0.060 0.17 4.4303 0.1 

Entropy 0.010 0.083 0.102 0.002 

 

Conclusions 

Traditional statistical methods may not be sufficient to forecast 

complex and ambiguous data logically. Therefore, in this study, 

the ARIMA time series model and entropy based on fuzzy time 

series were used to compare and evaluate time series data 

forecasting methods. To evaluate the methods during the studied 

period, the expected value was calculated, and the predicted 

values were compared with the actual values using four different 

criteria. The results showed that the entropy method based on 

fuzzy time series is more efficient for predicting energy 

consumption in hourly and long-term data. In contrast, the 

ARIMA method required several different normalization 

methods to address the presence of nonlinear trends in the data. It 

is worth noting that the entropy method showed a high ability to 

compare different data and provide better results than classical 

models. Although the analysis was conducted on short-term data, 

the results suggest that this method can also be effective for long-

term data and data without overall coherence. 
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