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ABSTRACT 
Mathematical modeling and computer simulations aid in global transmission parameter estimation. Equations, tools, and behaviour 

assessments are vital in disease control modeling. The bacteria Vibrio cholera causes the waterborne infectious disease cholera, which 

causes severe diarrhoea and fast dehydration. Haiti; exemplifies cholera devastating impact. Although it has been acknowledged in 

history, there is a noticeable absence of efficient control strategies. In this paper, we review several papers on cholera models. First; it 

can answer important questions about global health care and provide useful recommendations. After that; we examine the cholera model 

using sensitivity analyses with numerical simulation for all states. Full normalizations, half normalizations, and non-normalizations are 

used to evaluate the local sensitivities to each model state about the model parameters. According to the sensitivity analysis, almost 

every model parameter might affect the virus's spread among susceptible, and the most sensitive parameters are 𝑎 and λ(B), where 𝑎 is 

the rate of contact with polluted water and 𝜆(𝐵) depended on the state 𝐵 (Density of toxigenic Vibrio cholera in water). So, to prevent 

the spread of this disease, depending on the simulations, the susceptible and infected people should be more careful about the parameters 

𝑎 and λ(B). Finally; we intend to solve the Cholera disease using both the fifth order and fourth order ERK methods. We aim to then 

juxtapose our outcomes with those achieved through the classical fourth order Runge-Kutta Method. This comparison will be facilitated 

by an assessment of their respective relative local truncation error estimators.  
https://creativecommons.org/licenses/by-nc/4.0/ 
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1. Introduction 

The bacterium Vibrio cholera causes cholera; a serious infectious 

waterborne illness (V. cholera). In developing nations; such as 

Vietnam (2009), Cameroon (2010–2011), Haiti (2010–2011), 

Kenya (2010), the Democratic Republic of Congo (2008), Iraq 

(2008), Zimbabwe (2008–2009), and India (2008), cholera 

epidemics have been on the rise in recent years (2007)[1]. Because 

of its considerable impact on public health and its influence on 

societal and economic progress, cholera has been extensively 

studied through clinical trials, experiments, and theoretical 

investigations. It remains a noteworthy worldwide cause of 

infections and deaths, with the capacity to periodically trigger 

widespread disease outbreaks[2].  Cholera serves as an illustration 

of a bacterial infection that spreads through the body by an 

indirect path, which occurs when people consume feces-

contaminated water carrying the bacterium V. cholera[2]. 

Transmission of diseases between people and reservoirs means 

that disease transmission occurs via a pathway other than direct 

human-to-human contact.  Education; is an important component 

of illness management that is sometimes ignored[3]. It necessitates 

a human commitment rather than a biological intervention, but it 

has the potential to yield huge advantages at a cheap cost. Indeed; 

behavioural treatments were exclusively responsible for Guinea 

Worm Disease's near-eradication[4,5].  On the other hand; a lack 

of knowledge might hasten the progression of the disease. For 

example; 60% of homosexual males in an urban South African 

STD clinic were uninformed that anal intercourse constituted an 

HIV risk factor[6].  

Cholera-specific education involves encouraging individuals 

experiencing symptoms to seek medical help as soon as possible, 

as well as increasing sanitation and sanitary habits[7].  During the 

Guinea-Bissau cholera outbreak 1994, indigenous preventative 

rituals, radio, and word-of-mouth communication proved to be 

excellent instructional methods[7]. Messages were sent to research 

participants, who all sought medical help right away, but no one 

could figure out way the cholera epidemic was disseminated. The 

KwaZulu-Natal Department of Health in South Africa has 

* Corresponding author 

E-mail address: mardan.ameen@koyauniversity.org (Instructor).  

Peer-reviewed under the responsibility of the University of Garmian. 

http://www.garmian.edu.krd/
http://passer.garmian.edu.krd/
https://creativecommons.org/licenses/by-nc/4.0/
mailto:mardan.ameen@koyauniversity.org


 
 

 

  

 
    

 

 Pirdawood et. al. Passer 6 (Issue 1) (2024) 33-41 

34 

advised that educational messages concerning cholera should 

emphasize the importance of seeking prompt treatment at 

rehydration centres, clinics, or hospitals, along with practising 

self-care at home by consuming more fluids, especially sugar-salt 

solutions and oral rehydration salts[8].  

In[9], they developed a mathematical model for cholera infection 

that assessed the impact of health education campaigns, 

vaccination, treatment, and water sanitation. They found that 

these interventions, especially expanded and improved 

vaccination, were crucial for reducing the cholera burden and 

recommended a combination of public health measures to 

eradicate cholera effectively. In the paper[10]; they presented a 

modified mathematical model for controlling cholera outbreaks 

in Nigeria, focusing on treatment, water hygiene, and 

environmental sanitation. They analyzed the model's stability and 

calculated the basic reproduction ratio (𝑅0) for different control 

measures, concluding that improving treatment, water hygiene, 

and environmental sanitation could effectively eradicate cholera 

epidemics. The researchers in[11] investigated cholera 

transmission through mathematical modeling, calculating the 

contact number and stability of infection-free and infection-

present solutions. They formulated an optimal control problem to 

control disease spread based on sensitivity analysis and found that 

pre-exposure vaccination could significantly reduce the risk of 

cholera; with numerical results supporting the analytical findings. 

Due to the intricate nature of solving a system of ordinary 

differential equations, precise analytical solutions are generally 

absent for most problems. Moreover; these problems exhibit 

diverse time scales that unfold concurrently. As a result; 

numerous researchers have shown considerable interest in 

tackling these problems, leading to the development of various 

numerical techniques throughout the years. These methods 

encompass the Euler method, the Runge-Kutta method, the 

Implicit-Explicit (IMEX) Runge-Kutta method, the Signal 

Diagonally Implicit Runge-Kutta (SDIRK) methods, and the 

Semi-Implicit and Explicit Runge-Kutta Methods[12-14]. Another 

approach involves the utilization of the Finite Difference 

method[15]. Among these techniques, the Explicit Runge-Kutta 

method (ERK) has gained significant prominence for resolving 

problems expressed in a differential equation system (equation 

1). For a more comprehensive understanding, refer to[16, 17]. 

Around 1800, William Cumberland Cruikshank (in England) and 

Louis-Bernard Guyton de Morveau (in France) were the first 

scientists to advise disinfecting water with chlorine, when it was 

discovered that chlorine-treated water is efficient in the 

prevention of water-borne infections[18]. Chlorination can pose 

issues in certain cases due to reactions with organic compounds 

in water, leading to the creation of disinfection byproducts like 

trihalomethanes and haloacetic acids. These chemicals are 

potentially carcinogenic, so laws require regular monitoring in 

water systems. DBPs; which carry health risks, according to the 

World Health Organization, are relatively minor compared to 

inadequate disinfection[19].  Understanding the basic disease 

transmission process is critical for developing successful cholera 

preventive and management methods. As a result, mathematical 

modeling offers a one-of-a-kind way to learn about the dynamics 

of serious diseases. Hence; by considering the potential impacts 

of disease-control strategies such as water chlorination, 

mathematical modeling can predict the patterns of rapid 

epidemics such as cholera outbreaks.  

2. Mathematical Modeling for the Cholera Disease 

The model considers the various dynamics of a cholera epidemic, 

which are driven by population-specific factors such as water 

chlorination and bacterium ingestion rates. The initial model 

compartment and flows are depicted in Figure (1)[20, 21]. Here; we 

have a complex web of interactions between the infected 

individual, virus, and environment. The model divides the human 

population 𝑁(𝑡) into two groups: susceptible people 𝑆(𝑡), 

infected individuals 𝐼(𝑡), (actually infected people recovered by 

reaction rate 𝑟); And the aquatic population of pathogenic 

bacteria 𝐵(𝑡), and the model states, parameters and their 

descriptions of their values are given in Table (1). For more 

details; see[19]. 

 

Figure 1: Model diagram for Cholera disease. 

Then, the system of differential equations for diagram (1) can be 

defined as follows: 

𝑑𝑆

𝑑𝑡
= 𝑛(𝐻 − 𝑆) − 𝑎𝜆(𝐵)𝑆, 

𝑑𝐼

𝑑𝑡
= 𝑎𝜆(𝐵)𝑆 − 𝑟𝐼, 

𝑑𝐵

𝑑𝑡
= 𝐵(𝑛𝑏 − 𝑚𝑏) + 𝑒𝐼,..............................................................1 

where 𝜆(𝐵) =
𝐵

𝐾+𝐵
[21]. 

Tabel 1: The list of symbols with their descriptions are used in the 

model [21,22.] 

Symbol Biological Descriptions Values 

State 

variables 
  

S Quantity of individuals susceptible 10000 

I 
Quantity of individuals who have 

contracted the infection 
0.2 

B 
Density of toxigenic Vibrio cholerae 

in water (cells per milliliter) 
3 

Parameter   

H Overall human populace 10000 

n 
Rate of human births and deaths (day 

I) 
0.0001 

a 
Rate of contact with polluted water 

(day I) 
1 

K 
The density of Vibrio cholerae in 

water results in a 50% likelihood of 

1
∗ 10^6 



 
 

 

  

 
    

 

 Pirdawood et. al. Passer 6 (Issue 1) (2024) 33-41 

35 

contracting cholera (cells per 

millilitre) 

r 
Rate of cholera recovery among 

individuals (day I) 
0.2 

nb-mb 

Rate of V. cholera growth and loss in 

the aquatic environment (day-I) 

correspondingly 

-0.33 

 

e 

 

Impact of each infected individual on 

the population of V. cholera in the 

aquatic environment(cell/ml day I) 

10 

3. Explicit Runge-Kutta Method Algorithms 

The conventional order of the explicit Runge-Kutta algorithm 

corresponds to an approximation of the initial terms found in an 

infinite Taylor series. This particular series is employed to 

compute the trajectory followed by a mobile point. Shampine and 

Gordon; thoroughly explored this concept in their research[23]. 

The local truncation error (LTE) refers to the remaining segment 

of the infinite sum that has been eradicated. These forecasting 

techniques are recognized as explicit Runge-Kutta (ERK) 

algorithms. Essentially; they predict a future point's location 

without relying on preceding phase data. Due to this 

characteristic; they necessitate only a small quantity of input data, 

rendering it uncomplicated for utilization and construction. The 

explicit Runge-Kutta (ERK) method of p-stages is used to find 

the solution to an initial value problem: 

𝑑𝑣

𝑑𝑡
= 𝐹(𝑡, 𝑣).................................................................................2 

where the initial condition is 𝑣(𝑡0 ) = 𝑣0, will be determined as 

follows: 

𝑣𝑛+1 = 𝑣𝑛 + ℎ ∑ 𝑏𝑖𝑘𝑖
𝑝
𝑖=1 .............................................................3 

where 𝑘𝑖 = 𝐹(𝑡𝑛 + 𝑐𝑖ℎ, 𝑣𝑛 + ℎ ∑ 𝑎𝑖𝑗𝑘𝑗
𝑝
𝑗=1 ) and 𝑐𝑖 = ∑ 𝑎𝑖𝑗

𝑝
𝑗=1  , 

𝑖 = 1, 2, … , 𝑝. 

Considering vectors 𝑐 and 𝑏, both having 𝑝 dimensions, along 

with the matrix 𝐴(𝑎𝑖𝑗) of size 𝑝 × 𝑝, the structure of the ERK 

algorithm for the system (1) can be described as follows [24]: 

𝑘1 = ℎ𝐹(𝑡𝑛, 𝑣𝑛), 

𝑘2 = ℎ𝐹 (𝑡𝑛 +
ℎ

4
, 𝑣𝑛 +

𝑘1

4
), 

𝑘3 = ℎ𝐹 (𝑡𝑛 +
ℎ

4
, 𝑣𝑛 +

𝑘1

8
+

𝑘2

8
), 

𝑘4 = ℎ𝐹 (𝑡𝑛 +
ℎ

2
, 𝑣𝑛 −

𝑘2

2
+ 𝑘3), 

𝑘5 = ℎ𝐹 (𝑡𝑛 +
3ℎ

4
, 𝑣𝑛 +

3𝑘1

16
+

9𝑘4

16
), 

𝑘6 = ℎ𝐹 (𝑡𝑛 + ℎ, 𝑣𝑛 −
3𝑘1

7
+

2𝑘2

7
+

12𝑘3

7
−

12𝑘4

7
+

8𝑘5

7
). 

Predictor using a fifth order Explicit Runge-Kutta method: 

𝑣𝑛+1 = 𝑣𝑛 +
1

90
(7𝑘1 + 32𝑘3 + 12𝑘4 + 32𝑘5 + 7𝑘6)................4  

Predictor using a fourth order Explicit Runge-Kutta method: 

𝑣𝑛+1
 = 𝑣𝑛 +

1

6
(𝑘1 + 4𝑘4 + 𝑘6)..................................................5 

The fourth order classical Runge-Kutta method is as follows: 

𝑣𝑛+1
∗ = 𝑣𝑛 +

1

6
(𝑘𝑘1 + 2𝑘𝑘2 + 2𝑘𝑘3 + 𝑘𝑘4)..............................6 

where 𝑘𝑘1 = ℎ𝐹(𝑡𝑛, 𝑣𝑛), 𝑘𝑘2 = ℎ𝐹 (𝑡𝑛 +
ℎ

2
, 𝑣𝑛 +

𝑘𝑘1

2
), 𝑘𝑘3 =

ℎ𝐹 (𝑡𝑛 +
ℎ

2
, 𝑣𝑛 +

𝑘𝑘2

2
) and 𝑘𝑘4 = ℎ𝐹(𝑡𝑛 + ℎ, 𝑣𝑛 + 𝑘𝑘3). 

Relative local truncation error estimator (REE) is defined as 

follows: 

𝑅𝐸𝐸 =
|𝑣𝑛+1−𝑣𝑛+1

∗ |

𝑣𝑛+1
 .......................................................................7 

You can find the REE for the Cholera disease system (1) by 

comparing the ERK solutions v of Equations (4) and (5) with the 

classical RK method v∗, and the results are available in Table 3.  

The benefits of using high-order Runge-Kutta methods for 

solving differential equations include improved accuracy, 

reduced error, better stability (especially for stiff problems), 

increased computational efficiency, reduced sensitivity to step 

size choices, faster convergence, applicability to a wide range of 

problems, and the ability to use adaptive step size control. 

The arrangement of the Butcher array in equation (3) assumes the 

subsequent configuration: 

 

4. Analysis of the Cholera Disease System 

To solve the Cholera disease system numerically, we typically 

need to make assumptions or simplifications to obtain an 

approximate solution. Without specific values for the parameters 

(𝑛, 𝑎, 𝜆, 𝑟, 𝑛𝑏 − 𝑚𝑏, 𝑒) and initial conditions, it is challenging to 

provide a specific solution. Now; we will do some general steps 

that will be taken to analyze the system (1): 

4.1 Equilibrium Points 

To find the equilibrium points of the given differential equation 

system (1), we need to set the derivatives of each variable 

concerning time (𝑑𝑆/𝑑𝑡, 𝑑𝐼/𝑑𝑡, and 𝑑𝐵/𝑑𝑡) equal to zero and 

solve for the values of 𝑆, 𝐼, and 𝐵 that satisfy these conditions. 

Equilibrium points are the points where the rates of change of all 

variables are zero, indicating a stable state. 
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𝑑𝑆

𝑑𝑡
= 0  ⟹   𝑛(𝐻 −  𝑆) −  𝑎𝜆(𝐵)𝑆 =  0, 

𝑑𝐼

𝑑𝑡
= 0  ⟹   𝑎𝜆(𝐵)𝑆 −  𝑟𝐼 =  0, 

𝑑𝐵

𝑑𝑡
= 0  ⟹   𝐵(𝑛𝑏 −  𝑚𝑏)  +  𝑒𝐼 =  0.....................................8 

After solving this non-linear system and putting 𝜆(𝐵) =
𝐵𝑒𝑞

𝐾+𝐵𝑒𝑞
. 

Then; we get the equilibrium points:  

𝑆𝑒𝑞  =
𝑛𝐻

𝑛 + 𝑎∗
𝐵𝑒𝑞

𝐾+𝐵𝑒𝑞

.........................................................................9 

𝐼𝑒𝑞 =
𝑎𝐵𝑒𝑞𝑆𝑒𝑞

𝑟 (𝐾 + 𝐵𝑒𝑞)
..........................................................................10 

𝐵𝑒𝑞 =
𝑒𝐼𝑒𝑞

𝑛𝑏 − 𝑚𝑏
.............................................................................11 

After solving this set of non-linear equations, we find that it has 

two equilibrium points, namely 𝐸1 = (𝐻, 0, 0)and 

𝐸2 =

(
𝐻𝑒𝑛 − 𝐾(𝑛𝑏−𝑚𝑏)𝑟

𝑒(𝑎 + 𝑛)
,
𝐻𝑎𝑒𝑛 + 𝐾(𝑛𝑏−𝑚𝑏)𝑛𝑟

𝑎𝑒𝑟 + 𝑒𝑛𝑟
, −

𝐻𝑎𝑒𝑛 + 𝐾(𝑛𝑏−𝑚𝑏)𝑛𝑟

𝑎𝑚𝑟 + (𝑛𝑏−𝑚𝑏)𝑛𝑟
 ). 

4.2 Linearization 

Linearization begins by approximating the system's behaviour 

near its equilibrium points and subsequently examining the 

stability of these points. This procedure entails the determination 

of the Jacobian matrix for the differential equation system (1) and 

its subsequent assessment at every equilibrium point. 

To analyze the stability of the equilibrium points, we can use 

linear stability analysis, which involves finding the Jacobian 

matrix's eigenvalues at each equilibrium point. The eigenvalues 

will furnish us with information regarding the stability of the 

system. To calculate the Jacobian matrix for the given differential 

equation system (1) at the equilibrium point (𝑆𝑒𝑞 , 𝐼𝑒𝑞 , 𝐵𝑒𝑞), we 

will need to compute the partial derivatives of each equation 

concerning the variables S, I, and B, and then evaluate these 

derivatives at (𝑆𝑒𝑞 , 𝐼𝑒𝑞 , 𝐵𝑒𝑞). The Jacobian matrix will have the 

form: 

Jacobian =

[
 
 
 
 
 
𝜕(

𝑑𝑆

𝑑𝑡
)

𝜕𝑆

𝜕(
𝑑𝑆

𝑑𝑡
)

𝜕𝐼

𝜕(
𝑑𝑆

𝑑𝑡
)

𝜕𝐵

𝜕(
𝑑𝐼

𝑑𝑡
)

𝜕𝑆

𝜕(
𝑑𝐼

𝑑𝑡
)

𝜕𝐼

𝜕(
𝑑𝐼

𝑑𝑡
)

𝜕𝐵

𝜕(
𝑑𝐵

𝑑𝑡
)

𝜕𝑆

𝜕(
𝑑𝐵

𝑑𝑡
)

𝜕𝐼

𝜕(
𝑑𝐵

𝑑𝑡
)

𝜕𝐵 ]
 
 
 
 
 

............................................12 

We will compute the partial derivatives of each equation in the 

system (1) concerning S, I, and B, and then evaluate them at the 

equilibrium point, substitute these values into the computed 

partial derivatives to get the entries of the Jacobian matrix:  

Jacobian = [

−𝑛 − 
𝑎𝐵

𝐾 + 𝐵
0 −

𝑎𝑆𝐾

(𝐾 + 𝐵)2

𝑎𝐵

𝐾+𝐵
−𝑟

𝑎𝑆𝐾

(𝐾 + 𝐵)2

0 𝑒 𝑚

]............................13 

Substitute the equilibrium values (𝑆𝑒𝑞 , 𝐼𝑒𝑞 , 𝐵𝑒𝑞)  into the 

Jacobian matrix: 

Firstly, at 𝐸1 = (𝑆𝑒𝑞 , 𝐼𝑒𝑞 , 𝐵𝑒𝑞)  = (𝐻, 0, 0). 

Jacobian = [

−𝑛 − 
𝑎×0

𝐾 + 0
0 −

𝑎𝐻𝐾

(𝐾 + 0)2

𝑎×0

𝐾+0
−𝑟

𝑎𝐻𝐾

(𝐾 + 0)2

0 𝑒 𝑛𝑏 − 𝑚𝑏

] =

[

−𝑛 0 −
𝑎𝐻

𝐾

0 −𝑟
𝑎𝐻

𝐾

0 𝑒 𝑛𝑏 − 𝑚𝑏

]..............................................................14 

We must solve the characteristic equation det(Jacobian −
𝜆𝐼𝑑) = 0 in order to determine the eigenvalues of this matrix, 

where 𝐼𝑑 is the identity matrix, and 𝜆 represents the eigenvalues. 

|Jacobian − 𝜆𝐼𝑑| = |
|
−𝑛 − 𝜆 0 −

𝑎𝐻

𝐾

0 −𝑟 − 𝜆
𝑎𝐻

𝐾
0 𝑒 𝑛𝑏 − 𝑚𝑏 − 𝜆

|
|… (15) 

Setting det(Jacobian − 𝜆𝐼𝑑) = 0, we will get the Eigen values: 

𝜆1 = −𝑛, 

𝜆2

=
𝑛𝑏 − 𝑚𝑏

2
 −

𝑟

2
 

−
((𝑛𝑏 − 𝑚𝑏)2 +  2(𝑛𝑏 − 𝑚𝑏)𝑟 +  𝑟2 +

4𝐻𝑎𝑒
𝐾

)

1
2

2
. 

𝜆3

=
𝑛𝑏 − 𝑚𝑏

2
−

𝑟

2

+
((𝑛𝑏 − 𝑚𝑏)2 +  2(𝑛𝑏 − 𝑚𝑏)𝑟 +  𝑟2 +

4𝐻𝑎𝑒
𝐾

)

1
2

2
, 

Substitute the values of the parameters as given in Table 1 and 

solve for 𝜆 . Then, we will get the Eigenvalues for the given 

differential equation system (1) at the equilibrium point 𝐸1. 

𝜆1 = −0.000, 

𝜆2 = +0.0578, 

𝜆3 = −0.5878. 

Since one eigenvalue has a positive real part. So; the equilibrium 

point 𝐸1 = (𝐻. 0. 0) is unstable.  

At the second equilibrium point 𝐸2 = (𝑆𝑒𝑞 . 𝐼𝑒𝑞 . 𝐵𝑒𝑞),  

Jacobian =

[
 
 
 
 −𝑛 − 

𝑎𝐵𝑒𝑞

𝐾+𝐵𝑒𝑞
0 −

𝑎𝑆𝑒𝑞𝐾

(𝐾 + 𝐵𝑒𝑞)
2

𝑎𝐵𝑒𝑞

𝐾+𝐵𝑒𝑞
−𝑟

𝑎𝑆𝑒𝑞𝐾

(𝐾 + 𝐵𝑒𝑞)
2

0 𝑒 𝑛𝑏 − 𝑚𝑏 ]
 
 
 
 

........................16 
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where 𝑆𝑒𝑞 =
𝐻𝑒𝑛 − 𝐾(𝑛𝑏−𝑚𝑏)𝑟

𝑒(𝑎 + 𝑛)
, 𝐼𝑒𝑞 =

𝐻𝑎𝑒𝑛 + 𝐾(𝑛𝑏−𝑚𝑏)𝑛𝑟

𝑎𝑒𝑟 + 𝑒𝑛𝑟
 ,and  

𝐵𝑒𝑞  = −
𝐻𝑎𝑒𝑛 + 𝐾(𝑛𝑏−𝑚𝑏)𝑛𝑟

𝑎𝑚𝑟 + (𝑛𝑏−𝑚𝑏)𝑛𝑟
.     

So, we can get the Eigenvalues for the Jacobian matrix of the 

given differential equation system (1) at the second equilibrium 

point 𝐸2 will become: 

𝜆1 = −0.0001 +  0.0025𝑖, 
𝜆2 = −0.0001 −  0.0025𝑖, 
𝜆3 = −0.53. 

Given that the real parts of all eigenvalues are negative, this 

characteristic holds across all parameter values outlined in Table 

1. Consequently; it can be deduced that the equilibrium point 𝐸2 

is stable.  

To perform a phase plane analysis and visualize the behaviour of 

the system, we will plot trajectories in the (𝑆 − 𝐼). (𝑆 − 𝐵), and 

(𝐼 − 𝐵) planes. This phase plane will help us understand how the 

variables S, I, and B change over time and how the system 

evolves. Since; these plots can be complex, we will give you a 

general idea of how to create these phase plane plots using 

numerical simulations, as shown in Figure 2. 

 

Figure 2: Phase Plane Analysis of the differential equation system (1). 

5. Sensitivity Analysis 

Sensitivity analysis using mass action law is one of the finest 

techniques to better understand the issues of the biological 

process and analyze the output of the mathematical model. The 

following is a simple version of a sensitivity analysis technique 

with m reversible processes and n components [25]: 

∑ 𝛼𝑖𝑗  𝒞𝑗    
ℛ𝑖

𝑓

⇌ 
ℛ𝑖

𝑏

  ∑ 𝛽𝑖𝑗  𝒞𝑗  ,       𝑖 = 1. 2. … .𝑚,   𝑛
𝑗=1

𝑛
𝑗=1 ...................17 

Where 𝒞𝑗 , 𝑗 = 1. 2. … . 𝑛 are species (components), 𝛼𝑖𝑗 and 𝛽𝑖𝑗 are 

non-negative integers. And the constant reactions (forward and 

backward reactions) 𝑅𝑖
𝑓

> 0 and 𝑅𝑖
𝑏 ≥ 0.  The reaction rates may 

be described as follows using the mass action law: 

𝑟𝑖 = ℛ𝑖
𝑓 ∏ 𝒞

𝑗

𝛼𝑖𝑗
(𝑡)𝑛

𝑗=1 − ℛ𝑖
𝑏 ∏ 𝒞

𝑗

𝛽𝑖𝑗(𝑡)𝑛
𝑗=1 .................................18 

Thus, the system of differential equations is formulated below: 

𝑑𝒞

𝑑𝑡
= ∑ 𝛾𝑖  𝑟𝑖𝑖∈𝐽⊂ℝ ........................................................................19 

Where 𝛾𝑖 = 𝛽𝑖𝑗 − 𝛼𝑖𝑗  , for 𝑖 = 1. 2.… .𝑚 and 𝑗 = 1. 2. … . 𝑛. 

Equation (18) it is possible to write it in the form of:  

𝑑𝒞𝑗

𝑑𝑡
= ℓ𝑗(𝒞, ℛ)...........................................................................20 

Where 𝒞 ∈ ℝ𝑛 and ℛ ∈ ℝ𝑚. So, model inputs and outputs are 

represented by the vector of parameters and variables 

(components)[25]. Local sensitivity is also defined as the change 

in model states 𝒞𝑗 , 𝑗 = 1. 2. … . 𝑛 as a function of model 

parameters ℛ𝓅 , 𝓅 = 1. 2. … .𝑚. The sensitivity mathematical 

formulation for each variable about the parameters is provided in 

general. After some calculations, we get the following equation, 

and the Jacobian matrix is being used in the local sensitivity 

equation as follows: 

�̇� = ℒℛ𝓅
+ ℐ. 𝒮,   𝓅 = 1. 2. … .𝑚  .............................................21 

where the matrices 𝒮. ℒℛ𝓅
 and 𝒥 are provided as follows: 

𝒮 =

(

 
 
 
 

𝜕𝒞1

𝜕ℛ𝓅

𝜕𝒞2

𝜕ℛ𝓅

⋮
𝜕𝒞𝑛

𝜕ℛ𝓅)

 
 
 
 

, ℒℛ𝓅
=

(

 
 
 
 

𝜕ℓ1

𝜕ℛ𝓅

𝜕ℓ2

𝜕ℛ𝓅

⋮
𝜕ℓ𝑛

𝜕ℛ𝓅)

 
 
 
 

, and 𝒥 =

(

 
 
 

𝜕ℓ1

𝜕𝒞1
       

𝜕ℓ2

𝜕𝒞1
       

⋮       
𝜕ℓ𝑛

𝜕𝒞1
      

𝜕ℓ1

𝜕𝒞2
   ⋯ 

𝜕ℓ2

𝜕𝒞2
  ⋯

   ⋮       ⋱
𝜕ℓ𝑛

𝜕𝒞2
   ⋯

  

𝜕ℓ1

𝜕𝒞𝑛
  

𝜕ℓ2

𝜕𝒞𝑛

⋮
𝜕ℓ𝑛

𝜕𝒞𝑛 )

 
 
 

. 

By inputting parameters ℛ𝓅 with initial conditions for output 

components 𝒞j, the initial conditions for the system (20) are 

calculated. Readers could see more details in[25-33]. Using 

SimBiology Toolbox in MATLAB, the values of local sensitivity 

in equation (21) can be calculated with three different methods: 

full normalization, half normalization, and non-normalization. It 

is very important to pay attention and care to sensitivity analysis 

in a wide and accurate complex modeling case such as cholera. 

Therefore; we analyze the equations for cholera  defined in the 

system (1) and computed all three different cases of local 

sensitivities for the model compartments with regard to model 

parameters.  

Using the approach of local sensitivity analysis, as described in 

equation (21), is a step forward in further study and model 

building. To compute the local sensitivity for every model state 

to model parameters, we apply the SimBiology Toolbox for 

MATLAB. We use three approaches to evaluate these model 

sensitivities: full-normalizations, half-normalizations, and non-

normalizations; See Figures (3-5). Surprisingly; the outcomes 

provide us with a better understanding of the model and also 

allow us to determine key critical parameters of the model. Figure 

(3) shows that the set of {𝑎. 𝑒} is the most sensitive group of 

parameters on the Cholera disease, especially a (Rate of exposure 

to contaminated water) is very sensitive to the state variables 𝑆 

and 𝐼 (Susceptible and infected individuals), and the parameter 

{𝑛𝐻} is less effective model parameters, whereas the set {𝑟. 𝑛𝑏 −
𝑚𝑏. 𝜆(𝐵)} has not any effective on the model states. Figure (4); 

provides us with that model parameters 𝑛𝐻, 𝑟, 𝑒 and 𝑛𝑏 − 𝑚𝑏 are 

the least critical, but a and 𝜆(𝐵) are typically critical to a model, 

especially 𝜆(𝐵) is very sensitive to the state variables 𝑆 and 𝐼 
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(Susceptible and infected individuals). Figure (5); also shows that 

the group {𝑛𝐻. 𝑒. 𝑛𝑏 − 𝑚𝑏} model parameters are the lowest 

critical, whilst the set of a model parameter {𝑎. 𝑟. 𝜆(𝐵)} becomes 

sensitive for the model states, especially 𝜆(𝐵) is very sensitive to 

the state variables 𝑆 and 𝐵 (Susceptible individuals and 

Concentration of toxigenic V. cholera in water). Figures (7-9); 

are numerical simulations for each state variable. Figure (9); 

provides us with the numerical simulation for all state variables 

here as time passes through state 𝐵 (Concentration of toxigenic 

V. cholera in water) growing more and the number of susceptible 

individuals become infected and then they become less, so we see 

that the vibrio cholera spread and all susceptible people become 

infected. 

Figure 3: The two figures are local sensitivity analysis for cholera 

computed with full normalizations using MATLAB. In this approach, 

these two parameters {a, e} are extremely sensitive compared with other 

parameters, especially a is very sensitive to the state variable S and I 
(Susceptible and Infected people), (I) Each compartment's sensitivity to    

each parameter, (II) Each compartment's sensitivity to each parameter 

except a. 

 

Figure 4: The three figures are local sensitivity analysis for cholera 

computed with half normalizations using MATLAB. In this approach, 

the parameter λ(B)  very sensitive for state variables S and I, by 

eliminating λ(B), the parameter a is sensitive to S and I, and if we 

eliminate 𝑎 and 𝜆(𝐵), other parameters are become sensitive for all state 

variables, (I) Each compartment's sensitivity to each parameter, (II) Each 

compartment's sensitivity to each parameter except 𝜆(𝐵). 

 

Figure 5: The two figures are local sensitivity analysis for cholera 

computed with non-normalizations using MATLAB. In this approach; 

the group of parameters {𝑎, 𝑟, 𝜆(𝐵)} are very sensitive compared with 

other parameters, especially 𝜆(𝐵) is very sensitive to the state variable 𝑆 

and B, (I) Each compartment's sensitivity to each parameter, (II) Each 

compartment's sensitivity to each parameter except 𝜆(𝐵). 

 

Figure 6: ERK solution for state S. 

 

Figure 7: ERK solution for state I. 

 

Figure 8: ERK solution for state B. 

 

Figure 9: ERK solution for all state variables. 
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6. Numerical Experiments  

The objective of this section is to demonstrate the effectiveness of the 

introduced technique using an implementation carried out in the Matlab 

programming language. The specific parameter values and initial 

conditions can be found in Table 1.  

Tabel 2: Comparison between the ERK solution of fifth and fourth order for the cholera disease system (1). 

Time (days) 

𝑺 𝑰 𝑩 

ERK 
5th Order  

ERK 
4th Order 

ERK 
5th Order  

ERK 
4th Order 

ERK 
5th Order  

ERK 
4th Order 

0 1.0000e+4 1.0000e+4 0.2 0.2 3 3 

50 0.9987e+4 0.9988e+4 3.0288 2.9268 7.8133e+1 7.5499e+1 

100 0.9765e+4 0.9779e+4 51.6059 48.4650 1.3430e+3 1.2605e+3 

150 0.7527e+4 0.7644e+4 372.6154 365.8305 1.0708e+4 1.0452e+4 

200 0.4667e+4 0.4680e+4 150.2237 158.7689 5.1572e+3 5.4447e+3 

250 0.4230e+4 0.4216e+4 14.6497 15.0380 5.2180e+2 5.3628e+2 

300 0.4219e+4 0.4203e+4 1.2360 1.2155 4.4077e+1 4.3403e+1 

350 0.4244e+4 0.4229e+4 0.1062 0.1000 3.7783 3.5650 

400 0.4272e+4 0.4257e+4 0.0094 0.0085 3.3424e-1 3.0244e-1 

450 0.4301e+4 0.4286e+4 0.0009 0.0007 3.0550e-2 2.6531e-2 

500 0.4329e+4 0.4314e+4 0.0001 0.0001 2.8847e-3 2.4062e-3 

Tabel 3: Relative local truncation error estimator (REE) between ERK solution and classical RK method for the cholera disease system (1). 

Time 

(days) 

REE between the fifth order ERK and classical 

fourth order RK methods 

REE between the fourth order ERK and classical 

fourth order RK methods 

 𝑺 𝑰 𝑩 𝑺 𝑰 𝑩 

0 0 0 0 0 0 0 

50 0.0000 0.0115 0.0115 0.0000 0.0230 0.0230 

100 0.0005 0.0209 0.0211 0.0010 0.0426 0.0430 

150 0.0052 0.0054 0.0074 0.0102 0.0131 0.0170 

200 0.0007 0.0183 0.0180 0.0021 0.0365 0.0357 

250 0.0013 0.0069 0.0073 0.0022 0.0191 0.0199 

300 0.0013 0.0087 0.0082 0.0024 0.0080 0.0072 

350 0.0013 0.0239 0.0235 0.0023 0.0358 0.0350 

400 0.0013 0.0386 0.0382 0.0023 0.0638 0.0630 

450 0.0013 0.0528 0.0524 0.0023 0.0921 0.0912 

500 0.0012 0.0665 0.0661 0.0023 0.1205 0.1196 

Furthermore, we will do the parameter analysis, which involves 

exploring how changes in the values of system parameters affect 

the behaviour of the system (1). In our case, we are interested in 

the effects of changing parameters like the transmission rate (𝑎) 

and recovery rate (𝑟) in the ranges [0, 2] and [0, 0.5], 
respectively. See Figure 10. 
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Figure 10: Parameter Analysis: Effects of Changing the parameters a and r.

Conclusion 

As a result, using numerical simulations to identify the most 

critical parameters of the model within that investigation is the 

reasonable and best option to investigate the model in both a 

practical and theoretical way, as well as make some 

recommendations for future improvements to Cholera disease 

prevention efforts and vaccinations, treatments, and disease 

control. Additionally; we solved this Cholera disease by fifth 

order and fourth order ERK methods, compared our results with 

the fourth order classical Runge-Kutta Method. We got a good 

result by evaluating their relative local truncation error estimator 

(REE). Based on the results of the sensitivity analysis, it is 

evident that nearly all the parameters in the model exert 

significant influence on the transmission of the virus among 

vulnerable individuals. Notably; the parameter 𝑎 representing the 

rate of exposure to contaminated water and the parameter 𝜆(𝐵) 

associated with the state 𝐵 (the density of toxigenic Vibrio 

cholera in water), have emerged as the most impactful factors. 

The findings strongly suggest that in order to effectively mitigate 

the spread of this disease, susceptible and infected individuals 

must exercise heightened caution concerning parameters 𝑎 and 

𝜆(𝐵) and the parameter 𝐾 (Density of Vibrio cholera in water 

resulting in a 50% likelihood of contracting cholera), whereas it 

inversely changes with the parameter 𝐾. 
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