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 ABSTRACT 

One of the most popular methods for giving feedback to the control loop in industrial control systems 

is the proportional-integral-derivative (PID) controller. The tuning of the PID controller, however, is 

currently being researched by engineers.  In this research, a robust PID controller is proposed for the CE152 

magnetic levitation system. Magnetic levitation, commonly referred to as maglev, is a technology that uses 

magnetic fields to levitate an object, such as a vehicle or train, above a track. By using magnetic forces to 

counteract gravitational and inertial forces, maglev systems can achieve frictionless movement and 

potentially higher speeds compared to conventional wheeled transportation. In this research, the robust PID 

controller is involved by computing all stabilized PID controller gains for the affine linear characteristic 

polynomial in the presence of uncertain parameters using the parameter space approach and the edge 

theorem. The results of the parameter space approach are ranges of PID gains (𝐾𝑃 , 𝐾𝐷 , 𝐾𝐼). Here, the 

optimal PID gains were chosen by the Artificial Bee Colony optimization algorithm to get optimal 

performance for CE152 magnetic levitation. The research defines a specific performance index function 

that quantifies the system's time-domain step response criteria (small overshoot percentage with significant 

minimization of both settling and rising times). This index function is inversely proportional to the desired 

performance criteria, aiming to optimize the system's performance. MATLAB simulations are used to 

validate and demonstrate the efficiency of the proposed graphical method for enhancing stability in the 

maglev system. 

 

KEYWORDS: robust  control, Proportional-Integral-Derivative Controller (PID), Magnetic 

Levitation System, Bee Colony Algorithm, Edge theorem, Affine linear polynomial, uncertain parameters, 

Optimal control, PID gains. 

 

1 INTRODUCTION 

The Magnetic Levitation (Maglev) system is a technique that uses magnetic force manipulation to 

suspend an object in the air, effectively counteracting the force of gravity. In a maglev system, the object 

is levitated and held in a stable position without any physical contact with solid surfaces, thanks to the 

repulsive or attractive magnetic forces between magnets[4]. Maglev is a well-developed and rapidly 

expanding technology with diverse applications, and its common denominator is the absence of physical 

contact, which leads to minimal wear and friction. Maglev systems exploit the principles of magnetism to 

levitate objects or vehicles without the need for traditional mechanical contact with surfaces[5]. Maglev 

technology has a wide range of practical uses, and its ability to provide contactless support and precise 

control makes it suitable for various industrial applications, for example, high-speed train suspension, 
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superconductor rotor suspension of gyroscopes, rocket-guiding projects, magnetic bearings, and vibration 

isolation systems [6-11]. 

 Maglev systems pose significant challenges due to their highly nonlinear behavior. The 

modelling and control research of the magnetic levitation system is crucial in both industry and academia. 

To address these challenges, two main approaches are commonly used for modeling: the linearized 

approach and the nonlinear approach. For linearized models, techniques such as PI, PID, fuzzy, and state 

feedback LQR are widely used as in[3, 12-14]. PID controller is one of the most common and 

straightforward control strategies used in various applications due to its simplicity and effectiveness. 

However, one of the greatest drawbacks of the PID controller is the tuning process for its gains (𝐾𝑃, 𝐾𝐼, 

and 𝐾𝐷) [15]. Indeed, exact input-output feedback linearization and sliding mode control using Lyapunov 

functions are two promising methods for nonlinear control.[16-18]. 

 Either of the aforementioned linear models methodologies consider the suggested controller's 

robustness in the presence of model uncertainties in the system. When dealing with uncertain systems, some 

parameters in the characteristic polynomial may be uncertain or subject to variations. These uncertain 

parameters can represent modelling errors, unknown disturbances, or variations in system parameters due 

to external factors. Depending on how these uncertain parameters are included in the polynomial 

coefficients, the polynomial family can be categorized into several types[19]: 

1. Interval Coefficients: In this case, the uncertain parameters are represented as intervals, and the 

polynomial coefficients are bounded within these intervals. For example, if a parameter is 

denoted as 'a' and it is uncertain in the range [amin, amax], then the corresponding polynomial 

coefficient is considered to be within that interval. 

2. Affine Linear Coefficients: The uncertain parameters are represented as affine linear functions 

of some variables. This means the polynomial coefficients are expressed as a linear combination 

of uncertain parameters and some variables. For instance, a coefficient '𝑏' might be defined as 

𝑏 =  𝑝1𝑥 +  𝑝2𝑦, where '𝑝1' and '𝑝2' are uncertain parameters and '𝑥' and '𝑦' are some known 

variables. 

3.  Multilinear Coefficients: In this case, the polynomial coefficients are expressed as products of 

multiple uncertain parameters. For example, a coefficient '𝑐 ' might be defined as 𝑐 =  𝑝1 ∗
 𝑝2 ∗  𝑝3, where '𝑝1', '𝑝2', and '𝑝3' are uncertain parameters. 

4. Polynomial Coefficients: The uncertain parameters are included directly as coefficients of 

polynomial terms. For instance, a coefficient '𝑑 ' might be defined as 𝑑 =  𝑝1  𝑝2^2 +  𝑝3, 

where '𝑝1', '𝑝2', and '𝑝3' are uncertain parameters. 

The classification into interval, affine linear, multilinear, and polynomial coefficients helps in 

characterizing the nature of uncertainty in the system's characteristic polynomial. The CE152 magnetic 

levitation system's resultant characteristic polynomial is of the affine linear type. This research shows how 

to use the parameter space approach to determine all stabilized PID controller parameters (KP, KI, KD) for 

magnetic levitation CE152 system with parametric variations with a characteristic polynomial of an affine 

linear. Furthermore, this research work presents the Artificial Bee Colony Algorithm developed effective 

PID gains for optimal performance (small overshoot percentage with significant minimization of both 

settling and rising times).  The mathematical model of the CE152 magnetic levitation system is presented 

in Section II. The control design is introduced in Section III, which also lists the theoretical formulas and 

theoretical analyses of them.  Section IV introduces the simulation results and explains the Artificial Bee 

Colony Algorithm and Section V presents the conclusion of the study. 

2 MATHEMATICAL MODEL OF CE152 MAGNETIC LEVITATION SYSTEM 

2.1 Introduction of Magnetic Levitation System 

Figure 1 illustrates the Magnetic levitation CE152 model, which is comprised of a metal ball, coil, 

PC with Data Acquisition (DAQ) Card and power amplifier[20]. A steel ball (or any other magnetizable 

object) is levitated in the air through a delicate balance between the gravitational force and the magnetic 
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force created by an electromagnet. The control system's objective is to precisely control the magnetic force 

to counteract the gravitational force and keep the ball suspended at a desired height [2]. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Modelling of CE152 Magnetic Levitation System 

The block diagram of CE152 is demonstrated in Figure 2, which consists of: 

1. Digital-to-analogue converter 𝐾𝐷𝐴. 

2. Power amplifier (𝐾𝑖, 𝑇𝑎). 
3. Ball and coil (𝑘𝑐 ,𝑚𝑘). 

4. Position sensor (𝑘𝑥). 

5. Analog-to-Digital converter (𝐾𝐴𝐷). 

 

 

2.2.1 Digital-to-analogue converter subsystem 

D/A converter can be characterized in terms of (1), which is represented by the Simulink block model, 

as shown in Figure 3. 

 𝑢 = 𝑘𝐷𝐴𝑢𝑀𝑈 + 𝑢0 (1) 

 

Where 𝑢 is the model output voltage [𝑉], 𝑘𝐷𝐴 is the D/A converter gain [𝑉/𝑀𝑈], 𝑢𝑀𝑈 is the D/A 

converter input [𝑀𝑈] and 𝑢0 is the D/A converter offset [𝑉]. 
 

 

Figure 1:  CE152 magnetic levitation[1] 
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2.2.2 The power amplifier subsystem 

Figure 4 demonstrates the internal structure of the power amplifier, which works as a constant current 

source with the feedback stabilization current. Equations (2) and (3) are obtained by applying the 

Kirchhoff's Voltage Law (KVL) to the power amplifier circuit. 

 
𝑈𝑚 = 𝐿𝑐

𝑑𝑖

𝑑𝑡
+ (𝑅𝑐 + 𝑅𝑠)𝑖 

(2) 

 𝑈𝑚 = 𝑘𝑎𝑚(𝑢 − 𝑅𝑠𝑖𝑘𝑠) (3) 

 

 

 

 

 

 

 

 

 

 

 

 

The amplifier voltage 𝑢 and the amplifier current 𝑖 are considered the input voltage and the output 

current of the power amplifier, respectively. The power amplifier’s transfer function is illustrated by solving 

(2) and (3) and applying the Laplace transform as follows: 

 𝐼(𝑠)

𝑈(𝑠)
=

𝑘𝑎𝑚

( 𝐿𝑐𝑠 + (𝑅𝑐 + 𝑅𝑠)+𝑅𝑠𝑘𝑠𝑘𝑎𝑚)
 

 

(4) 

 
𝐼(𝑠)

𝑈(𝑠)
=

𝑘𝑎𝑚

(𝑅𝑐 + 𝑅𝑠)+𝑅𝑠𝑘𝑠𝑘𝑎𝑚

(
𝐿𝑐

(𝑅𝑐 + 𝑅𝑠)+𝑅𝑠𝑘𝑠𝑘𝑎𝑚
𝑠 + 1)

 

(5) 

 

Figure 3: .Digital-to-Analog converter subsystem 

 

Figure 2:  Schematic of the Magnetic levitation CE152 model[3] 

 

Figure 4: The power amplifie  
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Where, 

 
𝑘𝑖 =

𝑘𝑎𝑚

(𝑅𝑐 + 𝑅𝑠)+𝑅𝑠𝑘𝑠𝑘𝑎𝑚
 

(6) 

 
𝑇𝑎 =

𝐿𝑐

(𝑅𝑐 + 𝑅𝑠)+𝑅𝑠𝑘𝑠𝑘𝑎𝑚
 

 

(7) 

The power amplifier’s transfer function is represented by (8). 

 𝐼(𝑠)

𝑈(𝑠)
=

𝑘𝑖

(𝑇𝑎𝑠 + 1)
 

(8) 

Where 𝑘𝑖  and 𝑇𝑎  are called the coil and amplifier gain and the coil and amplifier time constant, 

respectively. The inverse Laplace transform of the current is illustrated by (9). 

 
𝑖(𝑡) = 𝑘𝑖(1 − 𝑒

−
𝑡
𝑇𝑎) 

(9) 

 

 

2.2.3 Ball and Coil Subsystem 

In a magnetic levitation system, the goal is to achieve levitation by creating a stable equilibrium 

where the forces on the levitated object (ball) are balanced, and there is no net force acting on it. At this 

point, the ball will float in the air, neither rising nor falling, effectively defying gravity, as shown in Figure 

5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Using Lagrange's equations, the model of the ball and coil for magnetic levitation can be described as 

follows[2]. 

 
ℒ(𝑥, 𝑥̇) = 𝑇 − 𝑉 =

1

2
𝑚𝑥̇2 − 𝑚𝑔𝑥 

(10) 

Where, 𝑇and 𝑉 denote the ball's kinetic and potential energy, respectively. In the absence of any non-

conservative external forces, Lagrange's equation for the magnetic levitation system is given by (11). 

 𝑑

𝑑𝑡

𝜕ℒ

𝜕𝑥̇
−

𝜕ℒ

𝜕𝑥
= 𝑚𝑥̈ + 𝑚𝑔 = 0 

(11) 

 

Who forces are acting on the system, one of them is the force caused by air damping. 𝐹𝑑  and the other is 

the force of the electromagnetic field 𝐹𝑚 which can be obtained as follows. 

Equations (12) demonstrate the energy in the coil which has 𝑁 number of coil turns, 𝑙 the coil length , 𝜇 is 

the permeability of the coil core, L is the inductance and 𝐴 is the coil cross-section area . 

 
𝑊𝑚 =

1

2
𝐿𝑖2 

(12) 

 
𝑅 =

𝑙

𝜇𝐴
 

(13) 

 

 

Figure 5:  Magnetic Ball Levitation Subsystem[2] 
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𝐿 =

𝑁2

𝑅
=

𝜇𝐴𝑁2

𝑙
 

(14) 

 
𝑊𝑚 =

𝜇𝐴𝑁2

2𝑙
𝑖2 

(15) 

 
𝐹𝑚 =

𝑑𝑊𝑚

𝑑𝑙
=

𝜇𝐴𝑁2

2𝑙2
𝑖2 = 𝑘𝑐

𝑖2

(𝑥 − 𝑥0)
2
 

(16) 

Where 𝑘𝑐 =
𝜇𝐴𝑁2

2
 is the aggregated coil constant [𝑁/𝐴], 𝑖 is the coil current [𝐴], 𝑥 is the distance [𝑚] and 

𝑥0 is the coil offset [𝑚]. 
 

The force caused by air damping 𝐹𝑑: 

 𝐹𝑑 = −𝑘𝐹𝑉𝑥̇ (17) 

Where, 𝑘𝐹𝑉 is the damping constant [𝑁. 𝑠/𝑚]. 
The two forces are appended as follows: 

 𝑑

𝑑𝑡

𝜕ℒ

𝜕𝑥̇
−

𝜕ℒ

𝜕𝑥
= 𝐹𝑚 + 𝐹𝑑 

(18) 

From (11), (16), and (17): 

 

 
𝑚𝑘𝑥̈ + 𝑚𝑘𝑔 = 𝑘𝑐

𝑖2

(𝑥 − 𝑥0)
2
− 𝑘𝐹𝑉𝑥̇ 

(19) 

Where. 𝑚𝑘 is the ball mass [𝑘𝑔] and 𝑔 is the gravity acceleration [𝑚/𝑠2]. 
Equation (19) can be arranged as follows[2]: 

 
𝑚𝑘𝑥̈ = 𝑘𝑐

𝑖2

(𝑥 − 𝑥0)
2
− 𝑚𝑘𝑔 − 𝑘𝐹𝑉𝑥̇ 

(20) 

 

 

2.2.4 Position sensor 

The position of the ball can be measured by the position sensor which provides feedback into the 

system about the ball’s position. Equation (21) represents the position sensor model. 

 𝑦 = 𝑘𝑥𝑥 + 𝑦0 (21) 

 

Where; 𝑦 is the model output voltage [𝑉], 𝑘𝑥 is the position sensor gain [𝑉/𝑚], 𝑥 is the ball position [𝑚] 
and 𝑦0 is position sensor offset [𝑚]. 
 

2.2.5 Analog-to-Digital converter subsystem  

A/D converter can be demonstrated by (22). 

 𝑦𝑀𝑈 = 𝑘𝐴𝐷𝑦 + 𝑦𝑀𝑈0 (22) 

Where; 𝑦𝑀𝑈 is the A/D converter output [𝑉], 𝑘𝐴𝐷 is the D/A converter gain [𝑀𝑈/𝑉], 𝑦 is the model output 

voltage [𝑉], and 𝑦𝑀𝑈0 is the A/D converter offset [𝑀𝑈]. Figure 6 represents the Simulink block diagram 

of the A/D converter and position sensor subsystem. 

 

 

 

 

 

 

 

 

 

Figure 6:  Simulink block diagram of A/D converter and position 

sensor subsystems 
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2.3 CE152 state space model 

By supposing 𝑥̇1 ≜ 𝑥2 ≜ 𝑥̇ , 𝑖 ≜ 𝑥3, 𝐴1 =
𝑘𝑐

𝑚𝑘
 , 𝐵1 =

𝑘𝐹𝑉

𝑚𝑘
  , 𝐶1 = 𝑘𝐷𝐴𝑘𝑖, and 𝐷1 = 𝑘𝐴𝐷𝑘𝑥. The state 

equations of the CE152 magnetic levitation system can be presented from (8), (20), and (2s) as shown in 

(23)[2]. 

  

[

ẋ1

ẋ2

ẋ3

y

] =

[
 
 
 
 
 
 

x2

A1

x3
2

(x1 − x0)
2
− B1x2 − g

1

Ta
x3 +

C1

Ta
u

D1x1 ]
 
 
 
 
 
 

  

 

 

 

 

(23) 

The state space model in the above equations gives evidence that the system is nonlinear. However, 

there are two famous methods for controlling the system: linear system control and nonlinear system control. 

The following section discusses the linearization process of the CE152 magnetic levitation system. 

 

2.4 Linearization 

The first-order differential equations of magnetic levitation are described in (23). By putting 𝑥̇1 =
𝑥̇2 = 𝑥̇3 = 0, the system's equilibrium points can be calculated. Which can be determined by solving the 

obtained system of nonlinear equations. Suppose that the equilibrium point at (𝑥10, 𝑥20 , 𝑥30) then, 𝑥20 =

0  and 𝑥30  = (𝑥10 − 𝑥0)√
𝑔

𝐴1
 [2]. A first-order approximation of the Taylor series expansion near the 

unstable equilibrium point (𝑥10, 𝑥20 , 𝑥30) will be used to linearize equation (23) [21, 22]. The following 

nonlinear differential equations can be used to represent the dynamic behavior of the magnetic levitation 

system in equation (23). 

 

 

 

 𝑓1(𝑥1, 𝑥2, 𝑥3, 𝑢) = 𝑥2 

𝑓2(𝑥1, 𝑥2, 𝑥3, 𝑢) = 𝐴1

𝑥3
2

(𝑥1 − 𝑥0)
2
− 𝐵1𝑥2 − 𝑔 

𝑓3(𝑥1, 𝑥2, 𝑥3, 𝑢) = −
1

𝑇𝑎
𝑥3 +

𝐶1

𝑇𝑎
𝑢 

 

 

(24) 

 

First, the dynamic behavior (24) is assumed to be acting at its equilibrium point (𝑥10, 𝑥20 , 𝑥30). If the 

system (24) is now perturbed, it will keep acting in the orientation of 𝑥1 = 𝑥10 + 𝛿𝑥1  ,𝑥2 = 𝑥20 +
𝛿𝑥2 ,𝑥3 = 𝑥30 + 𝛿𝑥3 and 𝑢 = 𝑢0 + 𝛿𝑢, where 𝛿𝑥1, 𝛿𝑥2, 𝛿𝑥3 and 𝛿𝑢 are illustrated as the impacts of the 

perturbation in the dynamic system. 

A Taylor series expansion can be applied to (24) around the equilibrium point (𝑥10, 𝑥20 , 𝑥30), leading to 

the following equation: 

 
𝑓(𝑥1, 𝑥2, 𝑥3, 𝑢) =

𝜕

𝜕𝑥1
𝑓(𝑥10, 𝑥20, 𝑥30, 𝑢0)

(𝑥1 − 𝑥10)

1!
+

𝜕

𝜕𝑥2
𝑓(𝑥10, 𝑥20, 𝑥30, 𝑢0)

(𝑥2 − 𝑥20)

1!

+
𝜕

𝜕𝑥3
𝑓(𝑥10, 𝑥20, 𝑥30, 𝑢0)

(𝑥3 − 𝑥30)

1!
+

𝜕

𝜕𝑢
𝑓(𝑥10, 𝑥20, 𝑥30, 𝑢0)

(𝑢 − 𝑢0)

1!
+ 𝐻.𝑂. 𝑇 

 

 

 

(25) 
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By neglecting the H.O.T and considering partial derivatives at the equilibrium point (𝑥10, 𝑥20 , 𝑥30 , 𝑢0 ), 

the Taylor expansion (25) can be reduced if the disturbances are small enough. Results that will be attained 

include: 

 

 
𝑓2(𝑥1, 𝑥2, 𝑥3, 𝑢) =

−𝐴1𝑥30
2

(𝑥1 − 𝑥0)
3
𝛿𝑥1 − 𝐵1𝛿𝑥2 +

𝐴_1 𝑥30

(𝑥1 − 𝑥0)
2
𝛿𝑥3 

(26) 

 
𝑓3(𝑥1, 𝑥2, 𝑥3, 𝑢) = −

1

𝑇𝑎
𝛿𝑥3 +

𝐶1

𝑇𝑎
𝛿𝑢 

 

(27) 

Equations (26) and (27) are represented the linear state equations of the magnetic levitation system. As a 

result, the state space model can be arranged as the following. 

 

[

𝑥̇1

𝑥̇2

𝑥̇3

] =

[
 
 
 
 
 

0 1 0
−𝐴1𝑥30

2

(𝑥1 − 𝑥0)
3

−𝐵1

𝐴1𝑥30

(𝑥1 − 𝑥0)
2

0 0 −
1

𝑇𝑎 ]
 
 
 
 
 

[

𝑥1

𝑥2

𝑥3

] + [

0
0
𝐶1

𝑇𝑎

]𝑢 

 

[𝑦] = [𝐷1 0 0] [

𝑥1

𝑥2

𝑥3

] 

 

 

 

 

(28) 

The CE152 model parameters used in modelling the system are described in Table 1. 

 

The state space model and transfer function of the system at 𝑥10 = 0.0032,𝑥20 = 0 and  𝑥30 = 0.5723  can 

be described as the following. 

 

[

𝑥̇1

𝑥̇2

𝑥̇3

] = [
0 1 0

395.5 −2.4 36
0 0.1988 −5.3492𝑒4

] [

𝑥1

𝑥2

𝑥3

] + [
0
0

1.5873𝑒5
]𝑢 

 

[𝑦] = [159.4921 0 0] [

𝑥1

𝑥2

𝑥3

] 

 

 

 

(29) 

 
𝐺(𝑠) =

9.06𝑒08

𝑠3 +  5.349𝑒04 𝑠2 +  1.234𝑒05 𝑠 −  2.116𝑒08
 

(30) 

 

The location of the open loop transfer function poles at 62,−64, and −5.3492𝑒4. There is one pole on the 

right half plane (RHP), which causes the system to be unstable. As a result, it is required to add a controller 

to stabilize the system. However, the purpose of the Maglev's control design is to develop a controller that 

levitates the steel ball from its starting location and forces it to follow a special position trajectory. This 

will be discussed in the following section. 

 

Table 1:  CE152 model parameters[1] 

Parameter Symbol Value 

ball mass [kg] mk 0.0084 

viscose friction[unitless] KFv 0.02 

ball diameter [m] Dk 12.7e-3 

gravity acceleration constant [𝒎. 𝒔−𝟐] g 9.81 

maximum DA converter output voltage[unitless] U_DAm 5 

coil resistance [Ohm] Rc                3.5 

coil inductance [H] Lc              30e-3             

current sensor resistance [Ohm] 𝑅𝑠                           0.25                
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current sensor gain  [unitless] 𝑘𝑠 13.33              

power amplifier gain [unitless] K_am             100             

maximum power amplifier output current[A] I_am             1.2              

amplifier time constant [s] Ta 1.8694e-05 

amplifier gain [A/V] k_i 0.2967 

D/A converter gain[unitless] k_DA 10 

A/D converter gain[unitless] k_AD 0.2 

position sensor constant[unitless] k_x 797.4603 

aggregated coil constant[N/V] k_f 0.606e-6 

coil constant[unitless] k_c 6.8823e-06 

coil limit bias [m] x_0  8.26e-3 

 

3 CONTROL DESIGN 

In a magnetic levitation (maglev) system, there are two main subsystems: the electrical subsystem 

(Current Loop) and the mechanical subsystem. The interaction between these two components allows for 

indirect control of the position of the levitated ball. A proportional-integral-derivative (PID) controller will 

be designed in this study with the presence of uncertain parameters in the system. Using a PID controller, 

the mechanical subsystem can track the target position with the elimination of the error and a sensible 

velocity. The classical PID control method does not explicitly account for parametric uncertainty, and its 

performance may degrade or become unstable in the presence of such uncertainties. Robust control, on the 

other hand, is a branch of control theory that focuses on designing controllers that can handle parametric 

uncertainties and external disturbances while maintaining desired performance and stability. 

In this study, both 𝑚𝑘 and 𝐾𝐹𝑣 were chosen as uncertain parameters such that 𝑚𝑘 ∈ [0.008 ,0.0088] 
and 𝐾𝐹𝑣 ∈ [0.015 ,0.025].  As a result, the following will be the transfer function: 

 
𝐺(𝑠,𝑚𝑘 , 𝐾𝐹𝑣) =

4.5𝑒7

5.92𝑚𝑘𝑠
3 + (5.92𝐾𝐹𝑣 + 3.17𝑚𝑘𝑒5)𝑠2 + (3.17𝐾𝐹𝑣𝑒5 −  197)𝑠 −  1.05𝑒7

 
 

(31) 

The characteristic polynomial is: 

 𝑃(𝑠,𝑚𝑘 , 𝐾𝐹𝑣) = 5.92𝑚𝑘𝑠
3 + (5.92𝐾𝐹𝑣 + 3.17𝑚𝑘𝑒5)𝑠2 + (3.17𝐾𝐹𝑣𝑒5 −  197)𝑠 −  1.05𝑒7  

(32) 

The unknown parameters in the robust theory of control are represented by the symbol 𝑞, e.g., 𝑞1 ≜
 𝑚𝑘, 𝑞2 ≜ 𝐾𝐹𝑣. As a result, the characteristic equation can be rewritten as: 

 𝑃(𝑠, 𝑞1, 𝑞2) = 5.92𝑞1𝑠
3 + (5.92𝑞2 + 3.17𝑞1𝑒5)𝑠2 + (3.17𝑞2 𝑒5 −  197)𝑠 −  1.05𝑒7  

(33) 

The aforementioned polynomial family belongs to the affine polynomial class, in which the uncertain 

parameters 𝑞1 and 𝑞2 are linearly entered into the polynomial coefficients. 

 

 
3.1 Stability test for the affine linear polynomial 

In an 𝑙-dimensional box Q, the parameters 𝑞𝑖 alter. 

 𝑞𝑖 ∈ [𝑞𝑖
− , 𝑞𝑖

+], 𝑖 = 1,2,… , 𝑙 
 

(34) 

The parameter box Q comprises the two uncertain variables: 𝑞1 and 𝑞2, is shown in Figure 7.  
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In the context of uncertain polynomial systems, the vertex polynomials are obtained by considering 

the extreme values of the uncertain parameters at the vertices of the parameter box Q. Each vertex of the 

parameter box represents a specific combination of the uncertain parameters, and evaluating the polynomial 

with these extreme values provides the corresponding vertex polynomial. However, when dealing with the 

affine-linear polynomial family and its stability analysis, checking the stability of the vertex polynomials 

alone is insufficient to assess the stability of the entire uncertain system. The reason lies in the nonlinearity 

introduced by the uncertain parameters in the polynomial. In general, the parameter space can be 

represented as a hypercube or parameter box in 𝑙  -dimensional space. Each vertex of this hypercube 

represents a specific combination of the uncertain parameters, and there are 2𝑙 vertices in total. The edge 

polynomials are a set of polynomials derived from the uncertain polynomial family, where one of the 

uncertain parameters varies between its maximum and minimum values, while the remaining 𝑙 − 1 

parameters are held constant at specific values. By considering all possible combinations of fixing 𝑙 − 1 

parameters and varying the remaining one, we obtain 𝑙2𝑙−1 edge polynomials [19]. The robust stability of 

an affine linear polynomial family and its edge polynomials are equivalent. If the family is robustly stable, 

all edge polynomials are robustly stable, and conversely, if all edge polynomials are robustly stable, the 

entire family is robustly stable. This relationship simplifies the analysis and design of robustly stable 

controllers for uncertain systems represented by affine linear polynomial families. [23]. In the case of 𝑙 =
2  and any 𝜔 , the value set of the polynomial family can be visualized as shown in figure 8. 

𝑃1(𝑠), 𝑃2(𝑠), 𝑃3(𝑠)and 𝑃4(𝑠) represent the vertex polynomials. The edge polynomials can be defined as 

shown in Table 2. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Figure 7:  Parameter box 

 

 

 

Figure 8: The value set of the polynomial with specific 

𝜔 and 𝑙 = 2 
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Table 2: The edge polynomials  when 𝒍 = 𝟐 

The edge polynomials   

𝒑(𝟏𝟐) = (𝟏 − 𝝀)𝑷𝟏(𝒔) + 𝝀𝑷𝟐(𝒔)       𝝀 ∈ [𝟎, 𝟏] 

𝒑(𝟏𝟑) = (𝟏 − 𝝀)𝑷𝟏(𝒔) + 𝝀𝑷𝟑(𝒔)       𝝀 ∈ [𝟎, 𝟏] 

𝒑(𝟒𝟐) = (𝟏 − 𝝀)𝑷𝟒(𝒔) + 𝝀𝑷𝟐(𝒔)       𝝀 ∈ [𝟎, 𝟏] 

𝒑(𝟒𝟑) = (𝟏 − 𝝀)𝑷𝟒(𝒔) + 𝝀𝑷𝟑(𝒔)       𝝀 ∈ [𝟎, 𝟏] 
 

By supposing the edge polynomial family as follows: 

 𝑝(𝑎𝑏) = (1 − 𝜆)𝑃𝑎(𝑠) + 𝜆𝑃𝑏(𝑠)       𝜆 ∈ [0,1]  

(35) 

Where,  𝑃𝑎(𝑠) = 𝑃𝑎0 + 𝑃𝑎1𝑠 + 𝑃𝑎2𝑠
2 + ⋯+ 𝑃𝑎𝑛𝑠𝑛   𝑃𝑎𝑛 > 0  and 𝑃𝑏(𝑠) = 𝑃𝑏0 + 𝑃𝑏1𝑠 + 𝑃𝑏2𝑠

2 +
⋯+ 𝑃𝑏𝑛𝑠𝑛   𝑃𝑏𝑛 > 0. The Bialas theorem is used to guarantee a stability for edge polynomials families. 

Such that 𝑝(𝑎𝑏) is robust and stable if and only if the  𝑃𝑎(𝑠) is stable , 𝑃𝑏(0) = 𝑃𝑏0 > 0 and the Hurwitz 

matrices of (𝐻𝑛−1
𝑎 )−1𝐻𝑛−1

𝑏  has no nonpositive real eigenvalues[19]. 

The controller design should be applied to four vertices of the polytypic system using the Edge 

Theorem, and then the stability of each edge polynomial must be verified using the Bialas Theorem. Using 

the parameter space approach, all PID controller coefficients can be obtained so that the vertices of the 

polytypic system and the edge polynomials are stable. All these coefficients guarantee the stability of the 

desired closed-loop system[24]. 

 

3.2 Robust Stabilization PID Controller Design 

There are several established methods for tuning PID controllers in the literature, such as Ziegler 

Nichols and Nyquist approaches. Traditional techniques, on the other hand, will supply designers with only 

one set of PID parameter values (𝐾𝑃 ,𝐾𝐼 , and 𝐾𝐷). A parameter space approach, on the other hand, is a 

graphical strategy for locating all stability zones of PID parameters and is considered a strong tool for robust 

stabilization challenges[15]. 

The open loop uncertain transfer function is shown in (36). 

 
𝐺(𝑠, 𝑞1, 𝑞2) =

4.5𝑒7

5.92𝑞1𝑠
3 + (5.92𝑞2 + 3.17𝑞1𝑒5)𝑠2 + (3.17𝑞2 𝑒5 −  197)𝑠 −  1.05𝑒7

 
 

(36) 

 

The conventional PID controller has the following transfer function: 

 
𝐺𝑃𝐼𝐷(𝑠) =

𝐾𝐷𝑠2 + 𝐾𝑃𝑠 + 𝐾𝐼

𝑠
 

 

(37) 

The closed-loop PID controller for the uncertain magnetic levitation system is shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:  The closed loop PID controller for the uncertain magnetic levitation 

system model. 
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Suppose the open loop transfer function 𝐺(𝑠) =
𝑁(𝑆)

𝐷(𝑆)
 , then the close loop transfer function after adding the  

PID controller will be as shown in (38). 

 

 

𝐺(𝑠)𝑐𝑙𝑜𝑠𝑒 𝑙𝑜𝑜𝑝 =
𝐺(𝑆)𝑃𝐼𝐷𝐺(𝑆, 𝑞1, 𝑞2)

1 + 𝐺(𝑆)𝑃𝐼𝐷𝐺(𝑆, 𝑞1, 𝑞2)
=

𝐾𝐷𝑆2 + 𝐾𝑃𝑆 + 𝐾𝐼
𝑆

𝑁(𝑆)
𝐷(𝑆)

  

1 +
𝐾𝐷𝑆2 + 𝐾𝑃𝑆 + 𝐾𝐼

𝑆
𝑁(𝑆)
𝐷(𝑆)

=
(𝐾𝐷𝑆2 + 𝐾𝑃𝑆 + 𝐾𝐼)𝑁(𝑆)

𝑆𝐷(𝑆) + (𝐾𝐷𝑆2 + 𝐾𝑃𝑆 + 𝐾𝐼)𝑁(𝑆)
 

 

(38) 

The closed loop characteristic polynomial can be obtained from (36) and (38) as follows: 

 

 𝑃(𝑠, 𝑞1, 𝑞2, 𝐾𝐷 , 𝐾𝑃 , 𝐾𝐼)
= 5.92𝑞1𝑠

4 + (5.92𝑞2 + 3.17𝑞1𝑒5)𝑠3 + (3.17𝑞2 𝑒5 + 𝐾𝐷4.5𝑒7 −  197)𝑠2

+ ( 𝐾𝑃4.5𝑒7 −  1.05𝑒7)𝑠 + 𝐾𝐼4.5𝑒7 

 

(39) 

 

Table 3 demonstrates the vertex polynomials for the closed loop characteristic polynomial. 

 

Table 3: The vertex polynomials for the affine linear polynomial 

  Vertex polynomial 

𝑷(𝒔, 𝒒𝟏
−, 𝒒𝟐

−) 𝑝(1) 
 

= 0.04736𝑠4 + 2536.089𝑠3 + (4558 + 𝐾𝐷4.5𝑒7)𝑠2 + ( 𝐾𝑃4.5𝑒7 −  1.05𝑒7)𝑠
+ 𝐾𝐼4.5𝑒7 

𝑷(𝒔, 𝒒𝟏
−, 𝒒𝟐

+) 𝑝(2) 
 

= 0.04736𝑠4 + 2536.148𝑠3 + (7728 + 𝐾𝐷4.5𝑒7)𝑠2 + ( 𝐾𝑃4.5𝑒7 −  1.05𝑒7)𝑠
+ 𝐾𝐼4.5𝑒7 

𝑷(𝒔, 𝒒𝟏
+, 𝒒𝟐

−) 𝑝(3) 
 

0.0521𝑠4 + 2789.689𝑠3 + (4558 + 𝐾𝐷4.5𝑒7)𝑠2 + ( 𝐾𝑃4.5𝑒7 −  1.05𝑒7)𝑠
+ 𝐾𝐼4.5𝑒7 

𝑷(𝒔, 𝒒𝟏
+, 𝒒𝟐

+) 𝑝(4) 
 

0.0521𝑠4 + 2789.748𝑠3 + (7728 + 𝐾𝐷4.5𝑒7)𝑠2 + ( 𝐾𝑃4.5𝑒7 −  1.05𝑒7)𝑠
+ 𝐾𝐼4.5𝑒7 

 

Equations (40) and (41), respectively, represent the real and the imaginary parts of the characteristic 

polynomial𝑃−−(𝑠, 𝐾𝐷 , 𝐾𝑃 , 𝐾𝐼). 

 𝑃𝑅𝑒𝑎𝑙
−− = 0.04736𝜔4 − (4558 + 𝐾𝐷4.5𝑒7)𝜔2 + 𝐾𝐼4.5𝑒7 (40) 

 𝑃𝐼𝑚𝑔
−− = −2536.089𝜔3 + ( 𝐾𝑃4.5𝑒7 −  1.05𝑒7)𝜔 

 

 

(41) 

Equations (40) and (41) can be rewritten in a matrix form as shown in (42). 

 

 
[4.5𝑒7 −4.5𝑒7𝜔2

0 0
] [

𝐾𝐼

𝐾𝐷
] + [

−0.04736𝜔4 −  4558𝜔2

−2536.089𝜔3 + ( 𝐾𝑃4.5𝑒7 −  1.05𝑒7)𝜔
] = 0 

 

 

(42) 

The parameter space method is an effective choice when dealing with systems with a small number 

of uncertain parameters, typically two or fewer. In such cases, exploring the parameter space becomes 

manageable, and the stability analysis can be performed efficiently. When there are more than two uncertain 

parameters, exhaustive exploration of the entire parameter space becomes computationally intensive, and 

alternative methods are often employed to assess stability regions. One such approach, as you mentioned, 

is to fix all parameters except the two parameters of interest and analyze the stability of the system for 

different combinations of these two parameters. Regarding PID controllers, there is a special scenario where 

it is sufficient to analyze the stabilization areas (regions of stability) for a fixed value of the proportional 

gain (𝐾𝑃) . In this case, fixing 𝐾𝑃 and exploring the stability regions in the two-dimensional space of the 

remaining gains (𝐾𝐷 and 𝐾𝐼) can provide valuable insights into the system's stability. If the stabilization 

areas for a fixed 𝐾𝑃 value is polygonal in geometry, which means that the regions of stability form polygons 
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in the (𝐾𝐷, 𝐾𝐼) parameter space. This polygonal shape implies that the system's stability is influenced in a 

specific and predictable manner by the variations of 𝐾𝐷 and 𝐾𝐼. The vertices of these stability polygons 

correspond to the edges of the parameter space where the system transitions between stability and 

instability[19]. Equation (42) is definitely of the pattern 𝐴𝑥 + 𝑏 =  0, and in order to obtain a solution, the 

determinant of matrix A should not equal zero. In this scenario, the determinant of the matrix A is: 

 

 𝐷𝑒𝑡(𝐴) = |4.5𝑒7 −4.5𝑒7𝜔2

0 0
| 

 

(43) 

The above determinant vanishes for any 𝜔. consequently, the solution for 𝐾𝐼 and 𝐾𝐷 in (40) and (41)  look 

to be either parallel lines or identical in the parametric surface, rather than a point. To ensure that the two 

lines are equal, the parameter KP's value must be supplied within the following range. 

 0

4.5𝑒7
=

0

−4.5𝑒7𝜔2
=

−2536.089𝜔3 + ( 𝐾𝑃4.5𝑒7 −  1.05𝑒7)𝜔

−0.04736𝜔4 −  4558𝜔2
 

 

(44) 

Then, 

 
𝜔2 =

(− 1.05𝑒7 + 𝐾𝑃4.5𝑒7)

2536.089
 

 

(45) 

Because the frequency has to be positive, the value of 𝐾𝑃  is chosen such that (− 1.05𝑒7 +

𝐾𝑃4.5𝑒7) ≥ 0. As a result, the constraint 𝐾𝑃 ≥
7

30
 guarantees that the lines in (40) and (41) are equivalent. 

When 𝐾𝑃 = 1  is used, the value of 𝜔  is equal to 116.635, as shown in (45) or Figure 10(a). which 

graphically displays the link between 𝐾𝑃 and 𝑤. The following results can be obtained by substituting the 

value of 𝐾𝑃 in (40) and (41): 

 𝑃𝑅𝑒𝑎𝑙
−− = 0.04736𝜔4 − (4558 + 𝐾𝐷4.5𝑒7)𝜔2 + 𝐾𝐼4.5𝑒7  

(46) 

 𝑃𝐼𝑚𝑔
−− = −2536.089𝜔3 + 3.45𝑒7𝜔 (47) 

Figure 11(a) demonstrates the stability areas of both 𝐾𝐼 and 𝐾𝐷  for 𝑃−−, where: 

1. Real root boundary (RRB) at 𝜔 =  0 is 𝐾𝐼 = 0. 

2. Infinity root boundary (IRB) at 𝜔 =  ∞  does not exist. 

3. Complex root boundary (CRB) at 𝜔 = 116.635. 

 𝐾𝐼 = 1.183 + 1.36𝑒4𝐾𝐷 (48) 

The curves in Figure 11(a) split the plot into four distinct zones. If one of these regions has a stable 

polynomial, the rest of the territory must likewise have stable polynomials, according to the Boundary 

Crossing Theorem. The rest of the region must be containing unstable polynomials if one of these regions 

contains an unstable polynomial. As a result, by picking one polynomial for each region and testing its 

stability, the collection of stability zones may be adequately defined [25]. When this approach is applied to 

the graph in Figure 11(a), only one stable zone is visible. However, the numbers (0,1,2,3) in the graph 

represent the number of unstable poles in The zone. The preceding approaches should be applied to the 

𝑃−+ , 𝑃+− , and 𝑃++ vertex polynomials family. Figure 10(b), figure 10(c), and figure 10(d)  demonstrate 

the connection between 𝐾𝑃 and 𝜔 for both  𝑃−+, 𝑃−+ , 𝑃+− , and 𝑃++ ,respectively.  
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Figure 10:  (a): Kp as function of ω for 𝑃−−, (b): Kp as function of ω for 𝑃−+,(c): Kp as function of ω for 

𝑃+−,and (d) Kp as function of ω for 𝑃++ 
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a) 
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c) 
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d) 
 

Figure 8:  (a): 𝐾𝐼 and 𝐾𝐷 Plane for 𝑃−−,(b): 𝐾𝐼 and 𝐾𝐷 Plane for 𝑃+−, (c): 𝐾𝐼 and 𝐾𝐷 Plane for 𝑃−+, and (d): 𝐾𝐼 and 

𝐾𝐷 Plane for 𝑃++ 
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Figures 11 (b), (c), and (d ) show how the RRB and CRB lines for 𝑃−+, 𝑃+−and 𝑃++ respectively, 

divide the "KI KD" plane into four new sections. As a result, in the same way as in the previous situation, 

the stable area of 𝑃−+ ,  𝑃+− and 𝑃++  can be recognized. By comparing the stability zones for  𝑃−− ,   
𝑃−+, 𝑃+−and 𝑃++ in figure 12, the stability region for 𝑃++  can be  recognized as it is a subset of the  𝑃−−,  
𝑃−+, 𝑃+−. As a result, the stability region of 𝑃++ guarantees the stability area for the original polynomial 

family. As a result, The range of 𝐾𝐷 ≥ 8.7074𝑒 − 05 and the 0 < 𝐾𝐼 <
 5.57𝑒11∗𝐾𝐷+ 4.85𝑒7

4.5𝑒7
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, the edge polynomial in Table 2 as well as the vertex polynomial in Table 3 should be 

examined to guarantee robust stability in the case of the affine linear polynomial. Bialas theorem is used to 

establish a stable region for the KI and KD as mentioned in the previous section. For the edge polynomial 

𝑝(12) = (1 − 𝜆)𝑃1(𝑠) + 𝜆𝑃2(𝑠)    𝜆 ∈ [0,1] , 𝑃1(𝑠) = 𝑃−− is one of the vertex polynomials in Table 3 it 

is stable from the previous section, 𝑃2(0) = 𝐾𝐼4.5𝑒7 > 0 because 𝐾𝐼 > 0, and the Hurwitz matrices of 

(𝐻3
1)−1𝐻3

2 have three eigenvalues, one of them is equal to 1 > 0 and the others are a function of 𝐾𝐼 and 𝐾𝐷. 

However, we can chart the relationship as a line in the  𝐾𝐼 and 𝐾𝐷 plane to determine the ranges of the 𝐾𝐼 

and 𝐾𝐷 which guarantees the robust stability of the closed-loop system as shown in Figure 13(a).  The 

preceding approaches should be applied to the remaining edge polynomial families 𝑝(13), 𝑝(42), and 𝑝(43) 

where, Figure 13(b), Figure 13(c), and Figure 13(d) demonstrate regions of stability of the 𝑝(13), 𝑝(42) and 

𝑝(43) respectively.  

 

 

 

Figure 9: 𝐾𝐼 and 𝐾𝐷Plane for 𝑃−−,𝑃−+,𝑃+− and 𝑃++. 
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Figure 10:  (a):𝐾𝐼 and 𝐾𝐷  Plane for 𝑃++and the eignvalues of 𝑃12, (b):𝐾𝐼 and 𝐾𝐷  Plane for 𝑃++and the eignvalues 

of 𝑃13, (c):𝐾𝐼 and 𝐾𝐷  Plane for 𝑃++and the eignvalues of 𝑃42,and (d):𝐾𝐼 and 𝐾𝐷  Plane for 𝑃++and the eignvalues of 

𝑃43 
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3.3  Artificial Bee Colony Algorithm for Optimization PID Controller 

The Artificial Bee Colony (ABC) algorithm is a metaheuristic optimization method derived from 

nature and modeled after the feeding strategy of honeybees. Dervis Karaboga came up with the idea in 2005, 

and many other fields use it to address optimization issues. Honey bees naturally employ a collective 

intelligence strategy to locate the finest food sources[26-28].  The Artificial Bee Colony (ABC) optimization 

algorithm is a popular swarm intelligence technique inspired by the foraging behavior of honeybees. It is 

used to solve various optimization problems, including parameter tuning for control systems like PID 

(Proportional-Integral-Derivative) controllers. In control system engineering, PID controllers are widely 

used to regulate processes and systems. The PID controller uses three control gains: 𝐾𝑃 (proportional gain), 

𝐾𝐼 (integral gain), and 𝐾𝐷 (derivative gain) to adjust the control action based on the error signal, which is 

the difference between the desired setpoint and the actual process variable. The main goal of employing the 

ABC optimization algorithm for tuning the PID gains (𝐾𝑃, 𝐾𝐼, and 𝐾𝐷) is to find the optimal combination 

of these gains that results in a well-performing and stable control system. The optimization process involves 

iteratively evaluating different sets of PID gains and updating them based on their performance. The ABC 

algorithm simulates the behavior of bees searching for the best food sources, and it does so by exploring 

the solution space to find the optimal PID gains. 

Here's a general outline of how the ABC optimization algorithm can be employed for PID controller 

tuning: 

1. Initialization: Generate an initial population of artificial bees, each representing a set of PID gains 

(𝐾𝑃, 𝐾𝐼, and 𝐾𝐷), These gains are typically assigned random values within predefined bounds. 

2. Objective Function: Define an objective function that quantifies the performance of the PID 

controller. This function measures how well the controlled system tracks the setpoint and how 

stable the system response is.  In this research, the following function is used: 

 
𝑃𝐹𝑖𝑡 =

100

2 ∗ 𝑂. 𝑆 + 6 ∗ 𝑇𝑆 + 12 ∗ 𝑇𝑟
 

 

(52) 

Because of the fitness function is inversely proportional to a dynamical system’s specific time 

domain step response requirements(small overshoot percentage with significant minimization of both 

settling and rising times), it should be altered for the maximum case.  

1. Employed Bees Phase: In this phase, the fitness of each bee (solution) in the population is 

evaluated using the objective function. Bees then share information about their food sources 

(performance) with other bees within the hive.  This phase can be stated mathematically as follows: 

 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑(𝑖)(𝑗) . (𝐻𝐵 − 𝐻𝐵[𝑝𝑒𝑟𝑚𝑢𝑡𝑒(𝑖)(𝑗)]) 

𝑛𝑒𝑤𝐻𝑃 = 𝐻𝐵 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 

 

(49) 

Where, HB is the Honey Bees, 𝑟𝑎𝑛𝑑(𝑖)(𝑗)  is an arbitrary number obtained based on the [-1,1] 

continuously normal distribution, 𝑝𝑒𝑟𝑚𝑢𝑡𝑒 is several rows transposition functions, i represents the number 

of honey bees, and The number of dimensions of the problem is denoted by j. 

 

1. Onlooker Bees Phase: Onlooker bees select food sources (solutions) probabilistically, with better-

performing solutions having higher chances of being selected. The onlooker bees evaluate these 

selected solutions and share information further. The following expression can be used to determine 

a selection probability scheme: 

 

𝑃𝑖 = 𝑃𝐹𝑖𝑡𝑖/ ∑ 𝑃𝐹𝑖𝑡𝑖

𝑛𝐻𝐵

𝑖=1

 

 

(50) 

Where, 𝑛𝐻𝐵  is the number of honey bees, and 𝑃𝐹𝑖𝑡𝑖 is the 𝑖𝑡ℎ food source's performance index 

function. A neighborhood source is established by adding a permutation-based random stepwise toward a 

randomly selected food source aside from herself when the 𝑖𝑡ℎ onlooker bee selects a food source (𝐻𝐵𝑟𝑤𝑠) 

based on the roulette wheel selection scheme: 

 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒 = 𝑟𝑎𝑛𝑑(𝑖)(𝑗) . (𝐻𝐵𝑟𝑜𝑠 − 𝐻𝐵[𝑝𝑒𝑟𝑚𝑢𝑡𝑒(𝑖)(𝑗)])  



 

307 

𝑛𝑒𝑤𝐻𝑃 = {
𝐻𝐵𝑟𝑜𝑠 + 𝑠𝑡𝑒𝑝𝑠𝑖𝑧𝑒,         𝑖𝑓 𝑟𝑎𝑛𝑑 < 𝑚𝑟
𝐻𝐵𝑟𝑜𝑠,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

 

 

(51) 

 Where; 0 ≤ 𝑚𝑟 ≤ 1  is the modification rate. 

 

2. Scout Bees Phase: Some bees become scout bees and are sent to explore new solutions randomly, 

beyond the existing solution space. This helps in diversifying the search and avoiding being trapped 

in local optima. 

2. Update Gains: The best solution (food source) found during the process represents the optimal 

PID gains. These gains are then implemented in the control system. 

3. Termination: The optimization process continues for a predefined number of iterations or until a 

stopping criterion is met. 

Employed bees and Onlooker bees aim to improve their solutions depending on the knowledge 

available with each iteration of the ABC algorithm. The fitness of the solutions is assessed following each 

iteration, and the optimal solution is noted. Until a stopping requirement is satisfied, such as when the 

maximum number of iterations is reached or an optimal solution is attained, the process doesn't stop. The 

main steps of the ABC algorithm are demonstrated by the Flowchart of the ABC algorithm in Figure. 15. 

By employing the ABC optimization algorithm, researchers can effectively tune the PID gains (𝐾𝑃, 𝐾𝐼, and 

𝐾𝐷) for a specific control problem, leading to improved performance and stability in the controlled system. 

It is essential to carefully design the objective function and set appropriate bounds for the PID gains to 

ensure the algorithm's success in finding satisfactory solutions[29]. 
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Figure 14: Flowchart of the ABC algorithm 
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4 RESULTS AND SIMULATION 

For magnetic levitation, a linear Control scheme delivers good reaction, fast settling time, and high 

accuracy. However, the system's response is limited to a certain significant degree. The technique in 

practical systems will not be stable. Throughout the operation, the system will be exposed to considerable 

uncertainty. As a result, for such variations, traditional PID is ineffective. Some intelligent control strategies 

are considered to resolve this type of problem. The graphical parameter space methodology is one of the 

most effective methods in this circumstance. Which is demonstrated by this study. 

The preceding section described the processes for locating all stabilization PID parameter locations 

for the CE152 Mglev system with parameter variations.  

 

Table 4: 

Response values for KP = 1, KI = 2000 and KD=5 

Uncertain Parameters Values 𝑻𝒓(𝒔𝒆𝒄) 𝑻𝒑(𝒔𝒆𝒄) O.S % 𝑻𝒔(𝒔𝒆𝒄) 

𝒒𝟏 = 𝟎. 𝟎𝟎𝟖, 𝒒𝟐 = 𝟎. 𝟎𝟏𝟓 2.0961𝑒 − 05 4.9931𝑒 − 05 𝟐𝟔. 𝟔𝟒𝟕𝟓 1.2193𝑒 − 04 

𝒒𝟏 = 𝟎. 𝟎𝟎𝟖𝟒, 𝒒𝟐 = 𝟎. 𝟎𝟐 2.1711𝑒 − 05 5.1652𝑒 − 05 𝟐𝟓. 𝟔𝟏𝟓𝟕 1.2496𝑒 − 04 

𝒒𝟏 = 𝟎. 𝟎𝟎𝟖𝟖, 𝒒𝟐 = 𝟎. 𝟎𝟐𝟓 2.2455𝑒 − 05 5.1652𝑒 − 05 𝟐𝟒. 𝟔𝟔𝟒𝟔 1.2786𝑒 − 04 

 

Table 4 shows how the performance differs in overshoot, rising time, settling time, and the peak time 

for the given system by choosing 𝐾𝑃 =  1, 𝐾𝐼 =  2000, 𝐾𝐷 =  5 as well as picking various values for 

uncertain parameters. Furthermore, Figure. 15 shows sample step responses with various locations within 

the specified ranges of parametric. 

 

 

  

 

Figure 15: Step response of CE153 MAGLEV  for different values of uncertain 

parameters 
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The Artificial Bee Colony (ABC) optimization algorithm is used to elect an optimal of PID gains 

controllers [KP KD KI] within a stable region which maximizes the cost function. The search domains for 

[KP, KD, KI] are selected to be [10 0.5 10] for lower bounds and [15 1 100] for upper bounds. After 25 

iterations in the (ABC) algorithm, the optimal matrix of PID gains controllers [KP KD KI] is obtained in 

Table 5. which highlights the disparities in overshoot, rising time, settling time, and peak time for the given 

system and selecting different values of uncertain parameters within the given regions 0.008 <  𝑞1 = 𝑚𝑘 =
  <  0.0088 and 0.015 <  𝑞2 =  𝑘𝐹𝑣 <  0.025. Moreover, Figure. 16 demonstrates the step response at 

the optimal of PID gains controllers [KP, KD, KI] and different points in the given ranges of the parametric 

uncertainties. 

 

Table 5: 

For the given system and picking alternative values of uncertain parameters, the performance varies in 

overshot, rising time, settling time, and peak time. 

 

Uncertain 

Parameters 

values 

Optimal values of 

[KP KD KI] 

𝑷𝑭𝒊𝒕 𝑻𝒓[𝒔𝒆𝒄] 𝑻𝒑[𝒔𝒆𝒄] 𝑶. 𝑺 % 𝑻𝒔[𝒔𝒆𝒄] 

𝒒𝟏 = 𝟎. 𝟎𝟎𝟖, 
𝒒𝟐 = 𝟎. 𝟎𝟏𝟓 

[10, 0.7798 

, 10] 
 

37462.5409 1.1982
∗ 10−4 

3.2549
∗ 10−4 

0 2.0525
∗ 10−4 

𝒒𝟏 = 𝟎. 𝟎𝟎𝟖𝟒, 
𝒒𝟐 = 𝟎. 𝟎𝟐 

[10.0014, 0.823 

, 10] 
 

37705.3697 1.1909
∗ 10−4 

3.2548
∗ 10−4 

0 2.0384
∗ 10−4 

𝒒𝟏 = 𝟎. 𝟎𝟎𝟖𝟖, 
𝒒𝟐 = 𝟎. 𝟎𝟐𝟓 

[10, 0.8865 

, 10.7022] 
 

39137.4098 1.1509
∗ 10−4 

3.0825
∗ 10−4 

0  1.9566
∗ 10−4 

 

 

  

 

Figure 16: Step Response of Maglev for optimal values of PID gains 
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Figure. 17 depicts the iteration phase of the (ABC) algorithm. This displays how the value of the 

performance index increases for each iteration of the algorithm until it reaches its maximum value at the 

final stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 CONCLUSION 

Magnetic levitation systems offer a glimpse of the future of transportation with their potential for 

high-speed, energy-efficient, and comfortable travel. However, widespread adoption will depend on further 

advancements in technology, cost-effectiveness, and public acceptance. As research and development 

continue, magnetic levitation has the potential to revolutionize transportation and transform the way we 

move people and goods. In the scenario of uncertain parameters, all stabilized PID controller gains for the 

CE152 magnetic levitation system benchmark (Maglev) were studied and the results were in this study. A 

graphical parameter space method is implemented to identify all stabilized PID parameter regions. The 

(ABC) approach is used to find an optimal set of PID parameters [KP, KD, KI] that optimizes the objective 

functions within these stabilized PID parameter zones. The MATLAB simulation results prove that all 

stabilization PID parameter values can be chosen arbitrarily, resulting in a robustly stable CE152 magnetic 

levitation system with parameter variations in both. 𝑚𝑘 and 𝑘𝐹𝑣.  

 

 

 

 

 

 

Figure 17:  performance index value for each iteration (ABC) algorithm 
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