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 ABSTRACT 

The electrocardiogram (ECG) is an important diagnostic tool in medicine. During a recording, 

ECG waveforms may change due to intrinsic processes, changes in recording parameters, such as 

recording electrode properties, and especially artefacts, e.g., electromagnetic hum or noise. Clearly, 

signal distortion can adversely affect medical decisions. In recent years, a variety of signal processing 

methods have been introduced to remove noise from signals. One of these methods is singular value 

decomposition (SVD)-based denoising, in which QRS-aligned sections of a signal channel are arranged 

in a matrix, which is then decomposed into singular values and left and right singular vectors. However, 

the right combination of these components can result in surprisingly good noise reduction. For 

multichannel recordings, this approach can be applied to each single channel. This means that cross-

channel correlations, i.e., signal correlations between channels, cannot be used. An obvious extension 

for the analysis of QRS-aligned multichannel signal sections is their representation by a three-

dimensional array, i.e., a third-order tensor with the dimensions time, segment and channel. Here, we 

show how to denoise tensorized QRS-aligned multichannel ECG sections, each comprising P-wave, 

QRS-complex, and T-wave, by higher-order singular value decomposition (HOSVD). We present a 

method for combining HOSVD components for denoising, i.e., noise reduction. Furthermore, we show 

that not only noise reduction but also data compression can be achieved with this method. Denoising 

quality is evaluated by using the Pearson correlation coefficient and extended Frobenius norm 

calculated for noisy and original and also for denoised and original signals. Gaussian white noise was 

used for the contamination of the original multichannel recordings, resulting in test data with various 

signal-to-noise ratios. The compression ratio determines the compression performance. With the 

proposed method, the correlations between the noisy and the original signal and the denoised signal 

with the original signal could be increased significantly, e.g., from around 0.45 to 0.97, and this at a 

compression rate of around 127. However, the tensor decomposition-based noise reduction of multiple 

channels often yields better results than the SVD-based single-channel denoising. This is the case when 

there are correlations between the channels in the multichannel signal to be denoised, especially 

correlations in the wanted signals. A scenario with more realistic noise conditions was generated by 

using an ECG simulator to further analyze the properties of HOSVD-based compression and denoising. 

This led to the finding that the selection of the HOSVD computed reconstruction components required 
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for denoising needs to be done carefully. To conclude, tensor decomposition-based compression and 

denoising can be an appropriate tool for the compression and denoising of multichannel signals. 

However, its usefulness under real-world conditions has yet to be demonstrated. 

 

Keywords: Biosignal; Compression; Denoising; Signal processing; Singular value 

decomposition; Tensor decomposition 

 

1. INTRODUCTION 

The introduction of chest X-rays in 1895 and the electrocardiogram (ECG) in 1902 provided 
objective and, most importantly, relevant information about the structure and function of the heart. 
(Howell, 1991). In the first half of the 20th century, a series of innovative discoveries and inventions 
led to the 12-lead ECG as we know it today. (Fye, 1994; AlGhatrif & Lindsay, 2012). ECG signals are 
one of the best-understood biomedical signals, and they provide important diagnostic information. 
Despite these successes, it is still important to improve or develop signal processing methods and 
procedures so that diagnostically relevant ECG features can be detected more effectively and reliably. 
Important features of an ECG are P-wave, QRS-complex, and T-wave: the P-wave indicates atrial 
depolarization, the QRS-complex reflects ventricular depolarization, and the T-wave represents 
ventricular repolarization. However, if no P-wave is present, there is a lack of atrial depolarization. 

Unfortunately, the ECG is often corrupted by noise and artefacts (Limaye & Deshmukh, 2016; 
Kher, 2019). Typical ECG contaminants are patient-electrode motion artefacts, electrode noise and pop 
artefacts, powerline interference, electromyographic noise, baseline wandering noise, electrosurgical 
noise, and noise of the data acquisition device. If the amplitude of a perturbation is in the range of the 
desired signal and if, in addition, the perturbation and desired signal spectrally overlap, then this 
generally results in a significant impairment of the time course or the quality of the desired signal. 

Noise suppression methods aim to remove unwanted noise and, of course, artefacts from a signal 
in such a way that the wanted signal is not changed as much as possible. This is especially difficult if 
the useful or wanted signal is not well known.  

Signal denoising is a problem that has been studied for many years. However, it remains a 
challenging and open task. The main reason for this is that, from a mathematical point of view, signal 
denoising is an inverse problem whose solution is often ambiguous. Nevertheless, signal denoising has 
achieved great success in the last decades and a variety of methods, which also comprise machine 
learning, have been developed (Ardeti et al., 2023; Chatterjee et al., 2020; Fan et al., 2019; Halidou et 
al., 2023; Maghfiroh et al., 2022; Samann & Schanze, 2021; Samann & Schanze, 2023; Schanze, 2018). 

The main goal of lossless data or signal compression techniques is to eliminate redundancies but 
not to change the information content (Elgendi et al., 2019; Jalaleddine et al., 1990; Jayasankar et al., 
2021; Salomon, 2007;). However, lossy signal compression is related to signal denoising in that both 
approaches aim to filter out the irrelevant content and retain only the relevant or wanted signal 
components or features. Thus, lossy compression and denoising are information reduction methods.  

Many lossy compression but also denoising techniques consist of two complementary processing 
steps: decomposition and reconstruction. Classically, the decomposition is performed by means of 
predefined functions, e.g., sinusoidal waves or wavelets. In more recent methods, the basis for the 
representation of the data is calculated from the data itself. Some of these methods use singular vector 
decomposition (Gong et al., 2017; Ouali & Chafaa, 2013; Schanze, 2018; Schanze, 2022; Wei et al., 
2001). Such a method is singular spectrum analysis (SSA), which may also be used for prediction 
(Golyandina & Zhigljavsky, 2020; Sanei & Hassani, 2016). However, SSA works for single-channel 
signals. In SSA, the first decomposition step is the two-dimensional embedding of a one-dimensional 
data structure. If a vector can represent the time series, then it is mapped into a Hankel or, what is 
equivalent, into a Toeplitz matrix. If the embedding is done into a Hankel matrix, then this is also called 
Hankelisation (Schanze, 2018).  

The next decomposition step is to decompose the Hankel matrix by singular value decomposition 
(SVD) into a sum of singular value weighted rank-one matrices, which are outer products of the related 
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left and right singular vectors. The reconstruction of the wanted signal can be achieved by an expedient 
modification or adjustment of the weights, which yields an approximated Hankel matrix, and by the 
appropriate back transformation. However, compared to classical linear filtering approaches, e.g., by 
aperiodic or Bessel bandpass filters, the structure of the desired time series is often less affected by 
SSA-denoising. The extension to multichannel signals was recently developed (Schanze, 2023b).  

Another approach to noise reduction of the ECG is single-channel noise reduction. Here, an ECG 
channel is partitioned into QRS-aligned segments, where each segment may contain the P- and T-waves 
associated with the QRS complex. (Schanze, 2022). These segments can be combined into a two-
dimensional data structure, i.e., a matrix. SVD can decompose this matrix into a set of rank-one matrices. 
A smart selection in conjunction with a subsequent superimposition of these matrices can lead to 
segments with high-quality denoising. The extension to multichannel signals was recently developed 
(Schanze, 2023a).  

Many data sets consist of two-dimensional data. Examples include images and multivariate time 
series. An important biomedical signal is the standard 12-lead ECG signal. Due to its structure, the 12-
lead ECG signal can be considered as a two-dimensional data set with the dimensions of time and 
channel. 

When analyzing the channels of a multivariate time series individually, correlations between the 

channels are not taken into account. To overcome this drawback, we rely in this work on a method 

that was developed for compression of QRS-aligned segments of multichannel ECG (Schanze, 

2023a).  

The goal of this paper is to show that tensor decomposition-based compression and noise reduction 
can be a useful tool for processing multichannel signals, e.g., 12-lead ECG.  

The paper proceeds as follows. In the Methods section the SVD-based decomposition of matrices 
is shortly reviewed. Then, based on the SVD, the decomposition and approximation of tensors is 
presented. We then describe the denoising of QRS-aligned segments of a single-channel ECG signal. 
Thereupon, relying on the compression of QRS-aligned segments of a multichannel ECG, a method for 
denoising such segments is introduced. In the Results section, artificially noisy signals are used to 
demonstrate the performance of tensor decomposition-based compression and noise reduction. SVD-
based denoising is used as a reference. The paper ends with a discussion and conclusions section. 

2. METHODS 

2.1 Singular Value Decomposition 

Singular value decomposition (SVD) is an important mathematical tool. For a synopsis of the early 
history of SVD see Steward (1993). We provide here a brief, incomplete overview. Let 𝐀 be an 𝑚 × 𝑛 
matrix. The SVD of 𝐀 yields three matrices that satisfy the following equation: 

𝐀 = 𝐔 𝐒 𝐕T            (1), 

where 𝐔 is an orthogonal 𝑚 × 𝑚 matrix, 𝐒 is a diagonal 𝑚 × 𝑛 matrix with ordered non-negative 
entries, i.e., 𝑠𝑖,𝑖 ≥ 𝑠𝑖+1,𝑖+1 ≥ 0 , and 𝐕  is an orthogonal 𝑛 × 𝑛  matrix. The 𝑠𝑖,𝑖  are named as singular 
values, and the columns of 𝐔  and 𝐕  are referred to as left and right singular vectors (Andrews & 
Patterson, 1976; Golub & Reinsch 1970; Jain, 1981; Mac Duffee, 1933; Steward, 1993). When 𝐀 has 
full rank, i.e., 𝑟 = rank(𝐀) = min(𝑚, 𝑛), then all singular values are larger than zero.  

It is well known that (1) can be rewritten:  

𝐀 = ∑ 𝐀𝑖
𝑟
𝑖=1 = ∑ 𝑠𝑖,𝑖 𝐮𝑖 ⊗ 𝐯𝑖

𝑟
𝑖=1         (2). 

Note, the outer product 𝐮𝑖 ⊗ 𝐯𝑖  is normalized: ‖𝐮𝑖 ⊗ 𝐯𝑖‖ = 1 . Thus, 𝑠𝑖,𝑖  is associated with the 
meaning of 𝐮𝑖 ⊗ 𝐯𝑖 in the representation of 𝐀: the larger an 𝑠𝑖,𝑖, the greater its importance. However, 
this property is important for compression and denoising. It should also be mentioned that rank(𝐀𝑖) =
1 and that the singular values are said to make up the singular value spectrum.  
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2.2 Third-order Tensor Decomposition 

Simplified, a tensor decomposition is a scheme for representing a tensor as a sequence of operations 
acting on other, often simpler tensors (Kolda and Bader, 2009; Liu, 2021; Wrede, 1972). Thus, SVD is 
a special tensor decomposition: since a matrix is a tensor of order two, SVD is a second-order tensor 
decomposition. Note that SVD and related higher-order tensor decompositions are multilinear.  

A rather simple but intuitive approach to tensors is to consider them as higher-order data structures. 
A matrix is a two-dimensional data structure. Examples are images or data vectors arranged as a matrix. 
A movie, which is a sequence of images, can be thought of as a third-order tensor. Another example is 
a time-segmented 12-lead ECG. Here, we have the dimensions of time, channel, and segment (epoch). 
Accordingly, one can also imagine higher-dimensional data structures, i.e., higher-order tensors. The 
goal of a higher-order tensor decomposition is, as mentioned, to represent a tensor by a sequence of 
operations acting on tensors of equal or lower order. However, higher-order tensors can often be 
decomposed in several ways. One approach is higher-order SVD. In the following, we will restrict 
ourselves to a decomposition procedure for tensors of order three, i.e., third-order SVD. 

Let 𝐀 be an (𝑚 × 𝑛 × 𝑜) tensor. Thus, an element of 𝐀 is indexed by three variables, i.e., 𝑎𝑖,𝑗,𝑘, 𝑖 =
1, 2, … , 𝑚, 𝑗 = 1, 2, … , 𝑛, and 𝑘 = 1, 2, … , 𝑜. It is now the case that this tensor can be represented as 
follows: 

𝐀 = ∑ ∑ ∑ 𝐀𝑖,𝑗,𝑘
𝑜
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1 = ∑ ∑ ∑ 𝑠𝑖,𝑗,𝑘  𝐮𝑖 ⊗ 𝐯𝑗 ⊗ 𝐰𝑘

𝑜
𝑘=1

𝑛
𝑗=1

𝑚
𝑖=1   (3), 

where 𝑠𝑖,𝑗,𝑘 is an element of the so-called core-tensor 𝐒 (see Schanze, 2023a). It is easy to verify 
that this is a tensor of order three. The vectors 𝐮𝑖, 𝐯𝑗, and 𝐰𝑘 are column vectors, which are linked 
together via outer products to form tensors. These vectors can be combined to matrices, i.e., (𝑚 × 𝑚) 
matrix 𝐔, (𝑛 × 𝑛)matrix 𝐕, and (𝑜 × 𝑜) matrix 𝐖. The process of computing 𝐒, 𝐔, 𝐕, and 𝐖, given 𝐀, 
is called third-order singular value decomposition (Kolda & Bader, 2009; Liu, 2021). Figure 1 shows 
an illustration of a third-order tensor decomposition by third-order SVD. 

2.3 A Straightforward Approximation of a Third-order Tensor 

We now look at 𝑠𝑖,𝑗,𝑘 𝐮𝑖 ⊗ 𝐯𝑗 ⊗ 𝐰𝑘, cf. equation (3). This expression can be decomposed (Schanze, 
2023a; Schanze, 2023b) into two parts: 𝑠𝑖,𝑗,𝑘  and 𝐓𝑖,𝑗,𝑘 = 𝐮𝑖 ⊗ 𝐯𝑗 ⊗ 𝐰𝑘 . However, 𝐓𝑖,𝑗,𝑘  is an 
(𝑚 × 𝑛 × 𝑜) tensor. Let 𝑡𝛼,𝛽,𝛾

(𝑖,𝑗,𝑘)
 be an element of 𝐓𝑖,𝑗,𝑘. If we define the extended Frobenius norm by  

‖𝐓𝑖,𝑗,𝑘‖
F

= √∑ ∑ ∑ [𝑡𝛼,𝛽,𝛾
(𝑖,𝑗,𝑘)

]
2

𝑜
𝛾=1

𝑛
𝛽=1

𝑚
𝛼=1        (4), 

then ‖𝐓𝑖,𝑗,𝑘‖
F

= 1  holds. Since 𝑠𝑖,𝑗,𝑘  can also be negative, we consider its absolute value. As a 
result, |𝑠𝑖,𝑗,𝑘|  may be interpreted as the importance of 𝐓𝑖,𝑗,𝑘 = 𝐮𝑖 ⊗ 𝐯𝑗 ⊗ 𝐰𝑘  with respect to a 
representation of 𝐀 by (3). Thus, an approximation of 𝐀 can be obtained by setting 𝑠𝑖,𝑗,𝑘 = 0 to exclude 
unwanted 𝐓𝑖,𝑗,𝑘 from (4). A somehow more useful alternative is to select those 𝐀𝑖,𝑗,𝑘 = 𝑠𝑖,𝑗,𝑘𝐓𝑖,𝑗,𝑘 that 
are appropriate for the approximation of 𝐀.  

Following Schanze (2023b), suppose that 𝜑𝑖(𝑙) , 𝜑𝑗(𝑙) , and 𝜑𝑘(𝑙) , 𝑙 = 1,2, … , 𝑑 , are mappings, 
which select the 𝑑 most interesting 𝐀𝑖,𝑗,𝑘. If such mappings are found, then  

𝐀(𝑑) = ∑ 𝑠𝜑𝑖(𝑙),𝜑𝑗(𝑙),𝜑𝑘(𝑙) 𝐮𝜑𝑖(𝑙) ⊗ 𝐯𝜑𝑗(𝑙) ⊗ 𝐰𝜑𝑘(𝑙)
𝑑
𝑙=1     (5)  

is the desired approximation or lossy reconstruction. This approximation can be used for both 
compression and denoising. A straight forward selection is to choose those core-tensor elements with 
the highest absolute values. 
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Figure 1. Illustration of the third-order SVD.  

The (𝑚 × 𝑛 × 𝑜)  tensors 𝐒  and 𝐀  are represented as cuboids, the matrices 𝐔 , 𝐕 , and 𝐖  as 

rectangles. 𝑎1,1,1 is the first element of 𝐀, it is represented by a small grey cuboid in the upper left of 𝐀 

(lower left). The components of the expression 𝐀1,1,1 = 𝑠1,1,1 𝐮1 ⊗ 𝐯1 ⊗ 𝐰1 , which are scalar and 

three-column vectors, are illustrated as grey objects in the drawings related to 𝐒, 𝐔, 𝐕, and 𝐖 (bottom 

right). However, 𝐀1,1,1 is also an (𝑚 × 𝑛 × 𝑜) tensor. The 𝑟-indexed markers indicate the structure for 

a subset. The regions associated with the 𝑟-indexed expressions indicate the structure for a subset. The 

formula on the top left shows the associated simple approximation approach based only on  

these bounds.  

2.4 Compression and Denoising Quality Assessment 

The data compression ratio can be defined as the ratio between the uncompressed and compressed 
size of the data to be analyzed. We restrict ourselves to third-order tensors, from which the 
corresponding calculations for third-order SVD-based compression or denoising can be easily derived.  

Let 𝐀(𝑑) be an approximation of 𝐀. For simplicity we assume that 𝐀, 𝑠𝜑𝑖(𝑙),𝜑𝑗(𝑙),𝜑𝑘(𝑙), 𝐮𝜑𝑖(𝑙), 𝐯𝜑𝑗(𝑙) 
and 𝐰𝜑𝑘(𝑙) are stored identically, e.g., by using double-precision floating-point format. It is easy to 
verify that the number of elements of 𝐀 to be stored is 

#(𝐀) = 𝑚 𝑛 𝑜            (6),  

here the number of elements to store 𝐀(𝑑) is 

  #(𝐀(𝑑)) = 4𝑑𝑠 +  𝑑𝐮𝑚 + 𝑑𝐯𝑛 +  𝑑𝐰𝑜        (7),  

where 𝑑𝑠 is the number of the 𝑠𝜑𝑖(𝑙),𝜑𝑗(𝑙),𝜑𝑘(𝑙) and where 𝑑𝐮, 𝑑𝐯, and  𝑑𝐰 are each the number of 
the  𝐮𝜑𝑖(𝑙), 𝐯𝜑𝑗(𝑙), and 𝐰𝜑𝑘(𝑙), respectively, required to compute 𝐀(𝑑). The term 4𝑑𝑠 is due to the fact, 
that also indices must be stored. Thus the compression ratio is 

 𝐶𝑅 = #(𝐀)/#(𝐀(𝑑)) = (𝑚 𝑛 𝑜)/(4𝑑𝑠 +  𝑑𝐮𝑚 + 𝑑𝐯𝑛 +  𝑑𝐰𝑜)   (8). 

Please note, that it was taken into account that some vectors  𝐮𝜑𝑖(𝑙), 𝐯𝜑𝑗(𝑙) and 𝐰𝜑𝑘(𝑙) can be used 
more than once to approximate 𝐀, which requires storing of additional data, i.e., indices. The numbers 
of the vectors used to compute #(𝐀(𝑑)) are 

#(vec) = (𝑑𝐮, 𝑑𝐯, 𝑑𝐰)          (9).  

In the case of SVD we find, by using equation (2) 

#(𝐀(𝑑)) = 𝑟(1 + 𝑚 + 𝑛)          (10). 

Let 𝐀 be a tensor, then the extended Frobenius norm ‖𝐀‖F is the square root of the sum of the 
absolute squares of the elements of 𝐀. Given 𝐀(𝑑) and 𝐀, we can introduce the distance measure via the 
extended Frobenius norm or, better, the Frobenius distance: 
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distF(𝐀(𝑑), 𝐀) = ‖𝐀(𝑑) −  𝐀‖
F
         (11). 

Another distance measure can be defined by using the Pearson correlation coefficient. For this we 
suppose to define a mapping that maps 𝐀(𝑑)  and 𝐀  to vectors, i.e., 𝐱 = vec(𝐀(𝑑))  and 𝐲 = vec(𝐀) . 
Then, we can compute 

 𝜌𝐱,𝐲 = cov(𝐱, 𝐲)/(𝜎𝐱𝜎𝐲)          (12).  

Both measures can be easily modified for SVD-based compression or denoising and for 
comparisons of higher-order tensors. 

 

 

Figure 2. Combining QRS-aligned 12-lead ECG segments to a tensor. 

The dimensions of the tensor are time, channel (lead), and epoch (heartbeat segment). The tensor 
contains a sequence of matrices, each of which contains QRS-aligned leads. P-waves, QRS-complexes 
and T-waves of an epoch belong to the same heartbeat. Note that the 12-lead ECG segments for each 
epoch can be represented by a matrix (brackets) and that these matrices are combined into a third-order 
tensor.  

2.5 Tensorization, Algorithm and Programming 

The main steps for compression or denoising of multidimensional ECG signals using QRS-based 
segmentation and tensor decomposition are: 

1. QRS-detection, e.g., by using lead II 
2. Generation of QRS-aligned segments (see Figure 2) 
3. Tensorization: combining the segments to a tensor, as shown in Figure 2 
4. Third-order tensor decomposition 
5. Selection of wanted components for compression/denoising 
6. Computation of the tensor approximation 

Programming was done with Matlab R2022b and a tensor toolbox (Baader et al., 2022) for various 
types of tensor decomposition, especially for higher-order singular value decomposition. For QRS 
alignment, we used the Matlab function “findpeaks” with an appropriate threshold. 

2.6 Signals and Testing 

To demonstrate the performance of the presented tensor decomposition-based approach for 
compression and denoising, a database (Liu et al., 2018) consisting of classified 12-lead ECG 
recordings was selected. The data set with the number 281 was recorded from a healthy subject. It was 
chosen as an example and then segmented according to the location of the QRS complexes, i.e., the 12-
channel data set was subdivided according to heartbeats. For this purpose, the QRS complexes of lead 
II were detected. Depending on the respective points in time, the channels were segmented in such a 
way that a three-dimensional data set with the dimensions time, channel and segment, i.e. epoch, was 
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created. Note that segmentation was performed so that all segments contain interrelated P-waves, QRS-
complexes, and T-waves, each aligned to the respective point in time of QRS-complex of the lead II. 
All segments were thus aligned phase-locked according to the respective lead II QRS-complexes in the 
same way and with identical lengths. As a result, a three-dimensional data structure, i.e., a tensor, was 
created. Figure 2 illustrates such a tensor. We want to mention that the signals were bandpass filtered, 
0.1 to 100 Hz, and sampled at 500 Hz. Each segment has a length of 𝑚 = 401 data points, the number 
of channels is 𝑛 = 12, and the number of segments or epochs per channel is 𝑜 = 34; thus the total 
number of data points is 𝑚 𝑛 𝑜 = 163,608.  

Independent Gaussian white noise (GWN) was added to each segment to test compression and 
denoising. In addition, the standard deviation of the noise was varied. Compression ratio, Frobenius 
distance and Pearson correlation coefficient have been selected to assess the quality of SVD- and third-
order SVD-based compression and denoising of QRS-aligned segments.  

Note that this simple noise corruption approach ignores Einthoven’s law, i.e., lead I + lead III = lead 
II. However, this is not critical as taking this law into account would have made compression easier due 
to lead dependency, but, also, depending on the noise type, denoising could be more difficult when 
correlations between channels must be taken into account to separate wanted signal and noise. In 
particular, against the background that, when denoising, representatives for the wanted signal and noise 
that are as separate as possible must be found, whereas when compressing, the most effective 
representation possible must be identified. 

However, all ECG recordings in the database used (Liu et al., 2018) unfortunately only have a very 
limited number of heartbeats per signal set, which limits an examination of low-frequency artefacts or 
noise components such as baseline wander, which can also be correlated across channels.  

To overcome this restriction, we used the Matlab version of an ECG simulation tool (Sološenko et 
al., 2021). We simulated a pure sinoatrial node-driven 12-lead ECG with 1,000 heartbeats and a related 
data set containing a mixture of muscle noise, electrode movement artefacts and baseline wander. We 
chose such a combination of interfering signals because they often occur in real ECG recordings. To 
create a noisy ECG, the original simulated ECG and the simulated noise were superimposed. The 
sampling rate was set to 1,000 Hz, and a signal-to-noise ratio of 𝜎𝑆 𝜎𝑁⁄ = 0.5  was selected. Each 
segment has a length of 𝑚 = 801 data points. For ECG segmentation the QRS detection and alignment 
and procedure described above were applied. The denoising of these multidimensional ECG segments 
was performed according to the above-introduced tensor decomposition-based method. 

3. RESULTS 

To demonstrate the performance of the method, different signal-to-noise ratios, each calculated 
over the full associated signal sets, were chosen: 𝑆 𝑁⁄ = ∞, 2, 1, 1/2. Figure 3 shows the fifth segment 
of the original, the noisy and the denoised 12-lead ECG, depending on the 𝑆 𝑁⁄ . The value 𝑆 𝑁⁄ = ∞ 
was selected to show the pure signal compression quality. The six largest core-tensor elements in terms 
of magnitude were chosen, i.e., 𝑑𝑠 = 6. Table 1 summarizes the results for the measures defined above, 
i.e., Pearson correlation coefficient, Frobenius distance, number of vectors used to compute the 
approximation, and the compression ratio. Please convince yourself that the respective used tensor 
decomposition components are dataset-dependent, which is shown by the vector selection #(vec) for a 
fixed number of core-tensor elements 𝑑𝑠. Note, that the sets obtained 𝑑𝑠 = 6 can be a superset of the 
sets obtainable for 𝑑𝑠 < 6. Note, a set means interrelated elements of the core-tensor 𝐒 and the matrices 
𝐔, 𝐕, and 𝐖. Table 1 also shows the results for 𝑑𝑠 = 3. We would like to point out that for no or weak 
noise, denoising for 𝑑𝑠 > 3 is better than for 𝑑𝑠 = 3. On the other hand, for strong noise, it is sufficient 
to denoise only for 𝑑𝑠 = 3. From Figure 3 and Table 1, it follows that tensor decomposition-based 
compression or denoising clearly reconstructs the original signal waveforms while removing Gaussian 
white noise remarkably well. The high compression ratios also show that the method not only effectively 
denoises but is also suitable for efficient storage of ECG. 

A double-logarithmic plot of the absolute values of the core-tensor elements, sorted in descending 
order, i.e., 𝑠𝜑𝑖(𝑙),𝜑𝑗(𝑙),𝜑𝑘(𝑙) ≥ 𝑠𝜑𝑖(𝑙+1),𝜑𝑗(𝑙+1),𝜑𝑘(𝑙+1) , obtained for a signal-to-noise ratio of 𝜎𝑆 𝜎𝑁⁄ =
0.5, is shown in Figure 4. Please note that the first values are many times larger than the last values. In 
addition, the first values are mainly related to ECG components, the rest to noise. Using the Scree plot 
(Schanze, 2023b), the number of core elements required for denoising was estimated to be three. 
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As mentioned earlier, another approach to ECG noise reduction is single-channel noise reduction 
by using SVD. We followed the procedure given by Schanze (2022) for lead II. Thus, the 34 QRS-
aligned segments of lead II of the data set used for tensor-based denoising were used. Figure 5 shows 
the comparison of SVD and third-order SVD-based denoising. For SVD-based denoising, only the first 
singular value and the first left and right singular vectors were used. Note that this led to the best result. 
For third-order SVD-based denoising, which is a special third-order tensor decomposition-based 
denoising, 𝑑𝑠 = 3 was used. The signal-to-noise ratio is 𝜎𝑆/𝜎𝑁 = 1/2 (all segments). Table 2 shows 
the corresponding results for the measures defined above, especially that third-order SVD-based 
denoising outperforms SVD-based denoising.  

For the simulated ECG superimposed with more realistic interferences, i.e., a mixture of muscle 
noise, electrode movement artefacts and baseline wander, we found that a simple selection of core-
tensor elements and the related components is generally not appropriate for high-quality denoising. 
Simple selection means here to select approximation or denoising components based on a scree plot of 
the absolute values of the core-tensor elements only (cf. Figure 4). 

We would like to illustrate this with an example obtained for a 12-lead ECG with an overall signal-
to-noise ratio of 𝜎𝑆/𝜎𝑁 = 0.5. Table 3 shows the noise improvements achieved as a function of the 
components selected for the three largest core-tensor elements for denoising. The core-tensor elements, 
sorted in absolute value descending order, are as follows: 𝑠1,1,1, 𝑠2,2,1, and 𝑠1,3,2. Thus 𝑠1,1,1 𝐮1 ⊗ 𝐯1 ⊗
𝐰1 + 𝑠2,2,1 𝐮2 ⊗ 𝐯2 ⊗ 𝐰1 + 𝑠1,3,2 𝐮1 ⊗ 𝐯3 ⊗ 𝐰2  is the approximation or denoised version of all 
noisy segments. If the core-tensor element 𝑠1,3,2  is exchanged against 𝑠3,1,1 , which has the seventh 
largest absolute value, then we have to compute 𝑠1,1,1 𝐮1 ⊗ 𝐯1 ⊗ 𝐰1 + 𝑠2,2,1 𝐮2 ⊗ 𝐯2 ⊗ 𝐰1 +
𝑠3,1,1 𝐮3 ⊗ 𝐯3 ⊗ 𝐰1  to get denoised segments. Based on the values for correlation and extended 
Frobenius distance of Table 3, it follows that the second approximation or denoising is significantly 
better than the first. This shows that the choice of elements for approximation or denoising should be 
carried out carefully. 

Figure 6 shows 20 consecutive Wilson V4 segments of the simulated 12-lead ECG, as well as the 
corresponding noisy and denoised segments. Recall that to generate the noisy signal, a mixture of 
muscle noise, electrode motion artefacts, and baseline wander was superimposed on the simulated ECG, 
also shown in Figure 6. The denoising was achieved by means of 𝑠1,1,1 𝐮1 ⊗ 𝐯1 ⊗ 𝐰1 + 𝑠2,2,1 𝐮2 ⊗
𝐯2 ⊗ 𝐰1 + 𝑠3,1,1 𝐮3 ⊗ 𝐯3 ⊗ 𝐰1. The excellent noise reduction of high-frequency components can be 
seen very clearly, while the low-frequency component, which essentially belongs to the baseline 
wandering noise, influences the amplitudes of the P-wave, QRS-complexes and T-waves. A reason for 
this is that some 𝐮𝑖 represent both ECG and noise components.   
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A 𝜎𝑆 𝜎𝑁⁄ = ∞ B 𝜎𝑆 𝜎𝑁⁄ = 2  

  
Figure 3. Compression and denoising of a 12-lead ECG for various signal-to-noise ratios. 

Each subfigure (A-D) contains 12 groups, which are in relation to the ECG leads. Each group 
consists of 3 signals: black: original signal, red: approximated or denoised signal, and blue: original 
signal with Gaussian white noise (GWN) overlay. Shown is the fifth epoch (segment) of in total 34 
epochs used for tensor decomposition-based compression/denoising. Please note that the GWN, which 
was statistically independently superimposed on all segments to generate noisy segments, could be 
reduced significantly. However, the larger the amplitude of a P-wave, a QRS-complex or a T-wave, the 
better the respective waveform of the denoised signal matches the original waveform. Furthermore, this 
property is quite independent of the signal-to-noise ratio. The compression ratio is 62.6, which indicates 
effective compression. It is to be noted that in A, the approximated signals contain fewer ripples than 
the original signals because the approximation, i.e., the compression, is lossy. 
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C 𝜎𝑆 𝜎𝑁⁄ = 1 D 𝜎𝑆 𝜎𝑁⁄ = 0.5 

  
Continuation of Figure 3. 

Figure 4. In descending order sorted absolute values of core-tensor elements for a signal-to-noise 
ratio 𝜎𝑆 𝜎𝑁⁄ = 0.5.  

Due to the structure of this graph, which can also be interpreted as a scree plot, the number of core-
tensor elements required for denoising was estimated to be three. Please note the double logarithmic 
representation.  
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Table 1. Third-order SVD-based denoising quality. Pearson correlation coefficient 𝜌  and Frobenius 
distance distF as a function of signal-to-noise ratio: 𝜎𝑆/𝜎𝑁. Original signal: 𝑆, Gaussian white noise 
(GWN): 𝑁 , noisy signal: 𝑆 + 𝑁 , denoised signal: den(𝑆 + 𝑁) . These measures were applied to 
vectorized data (see section 2.4). The number of core-tensor elements which have been selected for 
approximation by equation (5) is given by 𝑑𝑠 , #(vec)  denotes the numbers of the vectors used to 
compute the approximation, and 𝐶𝑅 is the compression ratio. Note that a GWN was created for each 
segment and, for ease of comparison, only the standard deviation was scaled for each segment according 
to the specifications. 

 

𝑑𝑠 𝜎𝑆/𝜎𝑁 𝜌𝑆,𝑆+𝑁 𝜌𝑆,den(𝑆+𝑁)  distF(𝑆, 𝑆 + 𝑁) distF(𝑆, den(𝑆 + 𝑁)) #(vec) 𝐶𝑅 

6 ∞ 1 0.993 0 5.9 (6, 4, 3) 63.4 

6 2 0.894 0.991 24.2 6.5 (6, 4, 3) 63.4 

6 1 0.707 0.986 48.4 8.0 (5, 5, 2) 75.8 

6 0.5 0.447 0.970 96.9 12.0 (6, 4, 4) 62.6 

3 ∞ 1 0.989 0 7.4 (3, 3, 1) 127.3 

3 2 0.894 0.986 24.2 7.6 (3, 3, 1) 127.3 

3 1 0.707 0.985 48.4 8.5 (3, 3, 1) 127.3 

3 0.5 0.447 0.971 96.9 11.6 (3, 3, 1) 127.3 

 

 

 

Figure 5. Denoising quality for single-channel SVD and for multichannel third-order SVD-based 
denoising of a 12-lead ECG. Note, only lead II was used for SVD-based ECG denoising. The fifth 
segment out of 34 segments is shown for original signal (black), noisy signal (blue), SVD-based 
denoised signal (green) and third-order SVD-based denoised signal (tensor, red).  
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Table 2. Denoising quality for single-channel SVD and for multichannel third-order SVD-based 
denoising of a 12-lead ECG. Note, only lead II was used for classical SVD-based ECG denoising. 
Pearson coefficient 𝜌  and Frobenius distance distF  as a function of signal-to-noise ratio: 𝜎𝑆/𝜎𝑁 . 
Original signal: 𝑆, Gaussian white noise: 𝑁, noisy signal: 𝑆 + 𝑁, denoised signal: den(𝑆 + 𝑁). 

 

Denoising type 𝜌𝑆,𝑆+𝑁 𝜌𝑆,den(𝑆+𝑁)  distF(𝑆, 𝑆 + 𝑁) distF(𝑆, den(𝑆 + 𝑁)) 

SVD 

0.349 

0.889 

28.0 

5.6 

Third-order SVD 0.965 2.7 

 

 

Table 3. Denoising quality for multichannel third-order SVD-based denoising of a simulated 12-lead 
ECG depends on the selection of the core-tensor elements, i.e., elements that were not set to zero for 
the approximation or denoising. The overall signal-to-noise ratio is 𝜎𝑆/𝜎𝑁 = 0.5 . The notations are 
based on those of Table 1 or 2. 

 

Core-tensor elements 𝜌𝑆,𝑆+𝑁 𝜌𝑆,den(𝑆+𝑁)  distF(𝑆, 𝑆 + 𝑁) distF(𝑆, den(𝑆 + 𝑁)) 

𝑠1,1,1, 𝑠2,2,1, 𝑠1,3,2 

0.848 

0.930 

274 

166 

𝑠1,1,1, 𝑠2,2,1, 𝑠3,1,1 0.971 106 

 

Figure 6. Denoising of simulated 12-lead ECG. Shown are 20 consecutive out of 1,000 segments of 
Wilson lead V4, each containing P-wave, QRS-complex and T-wave. The original signal segments are 
shown in black, the noisy signal segments in blue, and the approximated or denoised signal segments 
in red. Observe that the amplitudes of the P-waves, QRS-complexes, and T-waves of the denoised 
segments are coupled in some way to the low-frequency component present in the noisy segments. On 
the other hand, it is clear that higher-frequency noise or artifacts have been removed excellently. The 
overall signal-to-noise ratio is 𝜎𝑆/𝜎𝑁 = 0.5.  
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4. DISCUSSION AND CONCLUSIONS 

A method for compression and denoising multichannel ECG signals was presented. The method is 
based on the third-order tensor decomposition, i.e., third-order SVD. The first main step of the method 
is QRS-aligned signal segmentation, which results in a three-dimensional data structure, the dimensions 
being time, channel, and segment (heartbeat epoch). This three-dimensional array was considered a 
third-order tensor, opening the possibility of a tensor decomposition. The third-order SVD was chosen 
as the decomposition method. Appropriate components of the structures into which the tensor was 
decomposed were then selected for further processing. The resulting approximation can be used both 
for lossy data compression and for noise reduction.  

The performance of the method was demonstrated using a 12-lead ECG. The results obtained for 
original signals and original signals contaminated with Gaussian white noise show that the method can 
achieve both strong compression and excellent noise reduction. In particular, the time courses of the P-
waves, QRS-complexes and T-waves are hardly affected despite strong compression and noise removal.  

The comparison with the single-channel SVD-based noise reduction clearly showed the superiority 
of the tensor-based method. The reason for this advantage of the proposed method is that it can use 
correlations within all individual channels and between all channels of multichannel time series in order 
to compress the signals and to separate the wanted signal and noise. This finding is consistent with the 
results reported for multichannel singular spectrum analysis based on denoising multichannel signals 
(Schanze, 2023a; Schanze, 2023b). A similar result was found in the denoising of multichannel signals 
using autoencoders (Saman & Schanze, 2023). 

Two problems that have been encountered with tensor-based denoising are the choice of the 
components useful for approximation or denoising and the signal-noise coupling of some of these 
components. A possible solution to the first problem is a more detailed analysis of the components 
created by the decomposition. The second problem is probably more difficult, especially when the 
desired signal and noise are coupled.  

Due to its construction, the third-order SVD is multilinear. Thus, non-linear interactions in the 
multichannel signal to be processed, e.g., denoised, may not be exploited. 

It is obvious that due to the high dimensionality of a lot of many data sets, tensor decompositions 
require suitable and fast computer algorithms (Bader et al., 2022; Kolda & Bader, 2009). Despite the 
costs involved, it is often advantageous to analyse and process higher-dimensional data using higher-
dimensional methods, as has also been shown in this work.  

To conclude, the proposed method could be a useful tool for biomedical signal processing. 
Especially with regard to the goal that compression and denoising methods should remove redundant 
or unwanted components of a measured signal, but at the same time leave the actual useful or wanted 
components of the signal unchanged.  

However, a rigorous, and of course, statistical analysis of the methods presented, the comparison 
with other methods, e.g., classical linear filtering or recently developed machine learning approaches 
(e.g., Samann & Schanze, 2023), the use of better signal and noise models, also in conjunction with 
cross-channel correlations, such as in the case of Einthoven's law, and the development and testing of 
methods for the selection of the components obtained by tensor decomposition of the tensorized data 
for effective compression and efficient denoising are tasks for future work. The same applies to testing 
the presented methods in the real world, e.g. in clinical applications.  
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