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 ABSTRACT 

ECG recording often requires an effective method of denoising to provide a clean signal for an 

accurate and valid diagnosis. Denoising autoencoder (DAE) has shown optimistic results in denoising ECG 

signals, especially a simple DAE consisting of input, hidden, and output layers. However, to obtain a good 

and efficient denoising, the optimal number of hidden neurons needs to be estimated. If the number of 

neurons in the hidden layer is less than those of the input or output layer, a dimension reduction occurs, 

which is known as the ‘bottleneck effect’. This forces the DAE network to learn the relevant feature map 

of the input during training. Here, we propose a framework to denoise the ECG segments using a regularized 

denoising autoencoder (RDAE), with one hidden layer only, where the bottleneck effect is introduced by 

applying a sparsity penalty or regularizations to the weights to learn sparse feature maps instead of the 

redundant information in the input signals. In this work, 𝑳𝟏 and 𝑳𝟐 Kernel regularizations are evaluated in 

terms of denoising ECG signals. The optimal regularization parameter is evaluated using a statistical 

method known as the Gini index, to find the optimal trained decoding weights which resemble the 

morphologies of the ECG signal efficiently. In conclusion, the 𝑳𝟏- and 𝑳𝟐 -RDAE models with a suitable 

regularization parameter can effectively capture features that resemble the morphologies of ECG signals 

from its noisy version with an average signal-to-noise ratio improvement of 13.60 dB and 10 dB, 

respectively. 

 

KEYWORDS: Regularized denoising autoencoder; Kernel regularization; Resembling signal; 

Denoising ECG signals. 

 

1 INTRODUCTION 

Electrocardiogram, known as ECG, is a non-invasive test to diagnose cardiovascular disease (CVD) 

and to assess the condition of the heart. To check the abnormality of the heart, an ambulatory ECG 

monitoring test is often considered to detect/indicate abnormal cardio functions during long hours of 

recording ordinary daily activities. However, such ECG signals are often corrupted by different types of 

noises, like muscle/motion artefact, electrode movement, baseline wander, and Gaussian white noise. 

Therefore, several denoising methods have been proposed in the literature, such as discrete wavelet and 
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Savitzky-Golay filtering (Awal, Mostafa, & Ahmad, 2011), empirical mode decomposition (Kong, et al., 

2018; Nguyen & Kim, 2016) and adaptive filtering (Joshi , Verma , & Singh , 2015). However, denoising 

of a noisy ECG signal should be done carefully with as few changes in the morphology of ECG signals. 

The current state-of-art in signal denoising is the use of neural network models such as denoising 

autoencoder (DAE) (Samann, & Schanze, 2021; Chiang, et al., 2019; Zezario, et al., 2020), which have a 

great performance in denoising complex bio-signals, for example, ECG signal (Samann, & Schanze, 2023). 

In the last couple of years, several DAE models have been proposed in the literature to denoise bio-

signals, such as ECG signals. These models encode the noisy training segments to lower dimensional 

representation to capture relevant feature maps. They often have a symmetric architecture with single or 

multiple hidden layers, using either fully connected layers (also known as dense layers) or convolutional 

layers. In contrast, the number of hidden neurons needs to be less than those at the input/output layer to 

enable dimensional reduction, which is known as the ‘bottleneck effect’. Recently, fully convolutional 

network (FCN) and convolutional neural network (CNN) models have been used widely to denoised ECG 

signals through considering long input segment as proposed in (Chiang, et al., 2019; Qiu, et al., 2020; Wang, 

Liu, Peng, & Tsao, 2023). These deep learning models, which were previously addressed, share the usage 

of a long input signal and several hidden layers. We think that the sequential ECG epoch correlation in a 

lengthy input signal was used to improve the learning of these DAE models and subsequently denoising 

performance. The current DAE models, however, have the disadvantage of adopting excessively deep 

architectures with several hidden layers; as a result, the number of hidden neurons should be carefully 

estimated to provide effective denoising performance. In (Samann & Schanze, 2021; Samann & Schanze, 

2023), Akaike’s information criterion was used to determine the optimal number of hidden neurons that are 

necessary to denoise ECG segments in case of different noise types. Despite of the computational costs of 

estimating the number of hidden neurons, it is not practical in real-world applications to reset the 

hyperparameters with respect to noise type (Teoh , Tan , & Xiang , 2006). Here, we propose a method to 

denoise the ECG segments using a regularized denoising autoencoder (RDAE), with one hidden layer only, 

where the bottleneck effect is introduced by applying a sparsity penalty or regularizations to the weights to 

learn sparse feature maps instead of the redundant information in the input signals. In addition, 𝐿1 and 

𝐿2 kernel regularizations are evaluated in terms of denoising ECG signals and resembling the morphologies 

of ECG signals efficiently. The optimal regularization parameter is evaluated using a statistical method 

known as Gini index to find the optimal trained decoding weights (Schubert & Schanze, 2019). 

 

2 METHODOLOGY 

The block diagram of the proposed denoising framework is demonstrated in Fig. 1. 

 

 
Figure 1: Block diagram of the proposed denoising framework. 

 

 
2.1 Denoising Autoencoder (DAE) 

The simple autoencoder (AE) encodes high dimensional data into lower dimensional data by 

considering one hidden layer with a smaller number of hidden neurons than those at the input/output layer 

(see Fig. 2A). This is known as the ‘bottleneck effect’ which forces the network to learn the relevant features 
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of the input during training, i.e., constructing relevant feature mappings. To capture a good feature map, 

the number of hidden neurons needs to be estimated (Samann & Schanze, 2021). In this work, the number 

of neurons at the input/output is denoted as 𝑁, and the number of hidden neurons at the hidden layer is 

denoted as 𝐾. The general assumption which makes the AE able to learn relevant features from the training 

dataset is 𝐾 < 𝑁. 

The denoising autoencoder is often trained with a noisy input signal. �̃� ∈ ℝ𝑁×1 to capture important 

features of the target signal 𝐱 ∈ ℝ𝑁×1  through dimension reduction, where the noisy input signal �̃� is 

encoded into a latent representation 𝐡 ∈ ℝ𝐾×1 , then decoded back to the denoised signal 𝐲 ∈ ℝ𝑁×1 . 

Mathematically, it can be expressed as follows (Samann & Schanze, 2021), 

                               𝐡 = 𝐟(𝐖�̃� + 𝐛),        (1) 

                                𝐲 = (�̂�𝐡 + �̂�),        (2) 

where the pairs 𝐖 ∈ ℝ𝐾×𝑁, 𝐛 ∈ ℝ𝐾×1  and �̂� ∈ ℝ𝑁×𝐾 , �̂� ∈ ℝ𝑁×1  are the encoding and decoding 

weights and biases, respectively. In this work, the hyperbolic tangent was chosen as the activation function 

𝐟. These weights and biases are updated in a backpropagation fashion to minimize the total error between 

the target signal 𝐱 and the denoised signal 𝐲. The common loss functions 𝐿 for regression models (without 

constraining or regularization) are 𝐿1-norm (denoted as mean absolute error) (Samann, Meyer, & Schanze, 

2023), 

                                𝐿1 =
1

𝑁
∑ |𝐱𝒊 − 𝐲𝒊|,𝑁

𝑖=1        (3) 

and 𝐿2-norm (known as mean square error), given as, 

                                𝐿2 =
1

𝑁
∑ (𝐱𝒊 − 𝐲𝒊)2.𝑁

𝑖=1        (4) 

 

 
2.2 Regularized Denoising Autoencoder (RDAE) 

The regularized denoising autoencoder is a denoising autoencoder model which often imposes a 

sparsity penalty or regularizations to the activations or the weights of the hidden layers to learn sparse 

feature maps instead of the redundant information in the input signals (Samann, Meyer, & Schanze, 2023). 

In the case of RDAE model, the number of hidden neurons at the hidden layer is typically equal to or larger 

than those at the input or output layer (either 𝐾 = 𝑁 as in Fig. 3B or 𝐾 > 𝑁 as in Fig. 3C). Besides, another 

term is included in the loss function to regularize the weights or activations of hidden neurons. Eq. 3 and 4 

can be rewritten in case of 𝐿1 and 𝐿2 with corresponding regularizations of the weights (Samann, Meyer, 

& Schanze, 2023), 

                      Loss1 = 𝐿1 + 𝜆 ∑ |𝑤𝑖|𝑁
𝑖=1 ,      (5) 

                      Loss2 = 𝐿2 + 𝜆 ∑ 𝑤𝑖
2𝑁

𝑖=1 ,      (6) 

where 𝜆 is the regularization parameter. Weight regularization is commonly applied to both the 

encoder and decoder of RDAE model. The encoder and decoder weights of the proposed RDAE model 

have been subjected to the same regularization parameter 𝜆. 

Python 3.8 and the TensorFlow library were used to develop the proposed RDAE models. Adaptive 

moment estimation (with 𝜖 = 0.01, 𝛼 = 0.9) was used as an optimizer with Eq. 5 and Eq. 6 as loss functions, 

respectively. Also, the ‘EarlyStopping’ algorithm (with epochs=200 and patience=20) was used to avoid 

overfitting.  
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Figure 2. The feature map could be obtained by imposing ‘bottleneck effect’ at the hidden layer, as 

shown in A. Denoising autoencoder with the number of hidden neurons 𝐾 < 𝑁, or by imposing weight or 

activation regularization to the hidden layer as shown in regularized denoising autoencoder model with 

number of hidden neurons B. 𝐾 = 𝑁. C. 𝐾 > 𝑁. Note: 𝑁 is the number of neurons at the input/output layer. 

 

2.3 Data preparation 

A model for simulating ECG signals from PhysioNet is used to generate 50 ECG recordings of 98 

beats each (Sološenko, et al., 2021). These ECG signals are segmented into 4,900 QRS-aligned segments 

of 98 segments per recording to create a ground truth dataset. Each segment has a length of 80 samples and 

a sampling frequency of 100 Hz. These aligned segments are divided into 2,940, 980, and 980 segments as 

training, validation, and testing datasets. To evaluate the denoising performance of RDAE, these ECG 

segments are superimposed with three recorded physical noises, which are obtained from (Moody, 

Muldrow , & Mark, 1984), namely, muscle/motion artifact (MA), electrode movement (EM), and baseline 

wander (BW), and simulated noise such as a Gaussian white noise (GWN). Four noise levels for each noise 

type are considered 10%, 30%, 50% and 80% 𝜎(𝑥), where 𝜎(𝑥) is the standard deviation of the ECG 

segment. For the training phase, all noise levels in addition to the clean ECG segments, were used to train 

the proposed RDAE model.  

 
3. RESULTS AND DISCUSSIONS 

 

In this work, different evaluation metrics are used to assess the performance of RDAE model, such 

as signal-to-noise ratio improvement  (𝑆𝑁𝑅𝑖𝑚𝑝), percentage root-mean-square difference (𝑃𝑅𝐷%) and 

mean square error (𝑀𝑆𝐸), respectively, as follows (Samann, & Schanze, 2021), 

                       𝑆𝑁𝑅𝑖𝑚𝑝 [𝑑𝐵] = 10 log10 (
∑ | �̃�[𝑛]−𝐱[𝑛]|2𝑁

𝑛=1

∑ |𝐲[𝑛]−𝐱[𝑛]|2𝑁
𝑛=1

),   (7) 

                      𝑃𝑅𝐷% = √
∑ (𝐱[𝑛]−𝐲[n])2𝑁

𝑛=1

∑ (𝐱[𝑛])2𝑁
𝑛=1

× 100,      (8) 

                      𝑀𝑆𝐸 =
1

𝑁
∑ (𝐱[𝑛] − 𝐲[𝑛])2𝑁

𝑛=1 .     (9) 

where 𝐱[𝑛], �̃�[𝑛] and 𝐲[𝑛] are the original, noisy and denoised ECG segment, respectively. The 

performance of both 𝐿1- and 𝐿2- RDAE models for different values of 𝜆 are presented in table 1 and 2 

respectively.  

By training the RDAE model with QRS-aligned ECG segments, it has been found that the values of 

decoding weights for each hidden neuron have a direct relationship to the timestamp/features of the input 

segments. Based on this finding, the Gini index is considered to evaluate the sparsity of the trained decoding 

weights matrix, i.e., �̂� ∈ ℝ𝑁×𝐾  of 𝐾  hidden neurons and 𝑁  weights. In general, the Gini index is a 

statistical approach commonly used in economics to measure the inequality in income levels or wealth 

values. The Gini index of 0 denotes perfect equality or non-sparse, while Gini index of 1 denotes perfect 

inequality or sparsity (Dixon, Weiner, & Mitchell-Old, 1987). The Gini index for each decoding weight 

over the total hidden neurons could indicate how well the RDAE/ DAE models represent the morphologies 
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of the input segment. We calculate Gini index for the 𝑟th decoding weight over the total number of hidden 

neurons 𝐾 as follow (Schubert, & Schanze, 2019), 

                   𝐺𝑟 =
∑ ∑ |�̂�𝑟,𝑖−�̂�𝑟,𝑗|𝐾

𝑗=1
𝐾
𝑖=1

2𝑁2�̅�
, where 𝑟 = 1, 2, … , 𝑁.    (10) 

It is worth mentioning that the optimal number of hidden neurons depends on the complexity of the 

data and the type of noise. It was proven by (Samann & Schanze, 2023) that noises, e.g., GWN, of 

completely overlapping power spectrum with the target signal require a small number of neurons compared 

with slightly overlapping power spectrum noises, e.g., BW (see Fig. 3). In other words, a large number of 

hidden neurons allows the RDAE model to learn a complex representation of the training data. As a rule of 

thumb, the minimum number of hidden neurons for both RDAE and DAE models is half of the input/output 

length, 𝐾 = 𝑁/2. However, this could vary depending on the complexity of the task handled by the RDAE 

model. As a result, the ideal number of hidden neurons in this study was specified to be equal to the number 

of neurons in the input/output layer, 𝐾 = 𝑁. Despite the fact that the DAE model achieved good results in 

denoising ECG signals (see Fig. 3), the RDAE model with a suitable regularization parameter 𝜆 captures 

more relevant features that resemble the morphologies of ECG signals (see Fig. 6 &7). 

 

 
 

Figure 3: Plotting the 𝑆𝑁𝑅𝑖𝑚𝑝 of 𝐿1- and 𝐿2-RDAE model for different values of regularization parameter 

𝜆 in case of (left) BW noise, (right) GWN noise with noise level=80%. The green curve represents the 

performance of DAE model (Samann & Schanze, 2023). Note that the range of the two plots is not similar. 

 

Fig. 5, 6 and 7 show the effect of 𝐿1 and 𝐿2 weight regularization on the decoding weights of the 

RDAE model in the case of 𝜆 = 1𝑒−3, 1𝑒−4 and 1𝑒−5, respectively. The timestamp of ECG morphologies 

like the P-wave, QRS complex, and T-wave mostly exhibit large Gini index values or high sparsity in the 

decoding weights of the 𝐿1-RDAE model, especially in the cases of 𝜆 = 1𝑒−4 and 1𝑒−5. On the other hand, 

the decoding weights of 𝐿2-RDAE model revealed redundant ECG features, leading to low Gini index 

values. The smallest 𝜆 yields highly sparse decoding weights in the case of the 𝐿1-RDAE model and better 

representation of ECG morphologies. However, as shown in Fig. 4, the decoding weights of the traditional 

DAE model do not resemble the primary characteristics of the ECG signal. 
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Figure 4: In the case of MA noise, the decoder’s weights of the unregularized DAE model are plotted in A, 

and the Gini index values of these weights are calculated below in B. The low sparsity in the Gini index 

curve indicates that there is no link between the decoding weights and the morphologies of the ECG signal. 

 
Figure 5: In the case of MA with 𝜆 = 1𝑒−3, the decoding weights are plotted for A. 𝐿1-RDAE model and 

B. 𝐿2-RDAE model and the Gini index values of these weights are calculated below each case in C. and D., 

respectively. Note: the hidden neurons with nonzero and zero weights are plotted in black and grey line, 

respectively. The Gini index curve for the 𝐿1-RDAE model shows a high sparsity, especially at the weights 

linked to the timestamp of QRS-complex, while the 𝐿2-RDAE model exhibits low sparsity due to the 

redundant representation of ECG’s morphologies, e.g., P-wave, QRS-complex and T-wave. 
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Figure 6: In case of MA noise with 𝜆 = 1𝑒−4, the decoding weights are plotted for A. 𝐿1-RDAE model and 

B. 𝐿2-RDAE model, and the Gini index values of these weights are calculated below each case in C. and 

D., respectively. Note: the hidden neurons with nonzero and zero weights are plotted in black and gray line, 

respectively. The Gini index curve for the 𝐿1-RDAE model shows a high sparsity at the weights linked to 

the timestamp of P-wave, QRS-complex and T-wave, while the 𝐿2-RDAE model exhibits low sparsity due 

to the redundant representation of ECG’s morphologies. 

 
Figure 7: In case of MA noise with 𝜆 = 1𝑒−5, the decoding weights are plotted for A. 𝐿1-RDAE model and 

B. 𝐿2-RDAE model, and the Gini index values of these weights are calculated below each case in C. and 

D., respectively. Note: the hidden neurons with nonzero and zero weights are plotted in black and gray line, 

respectively. The Gini index curve for the 𝐿1-RDAE model shows a high sparsity at the weights linked to 

the timestamp of P-wave, QRS-complex and T-wave, while the 𝐿2-RDAE model exhibits low sparsity due 

to the redundant representation of ECG’s morphologies. 

 

In Fig. 8 & 9, we demonstrated the decoding weights, which correspond to large hidden neurons, and 

how closely they resemble the denoised ECG segment. It is clearly detectable/apparent that few decoding 
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weights in case of 𝐿1 -RDAE model are sufficient to reconstruct the original ECG segment with few 

numbers of large hidden neurons compared to 𝐿2-RDAE model. Besides, in case of 𝐿1-RDAE model, 

plenty of the hidden neurons are near to zero or exactly zero compared to 𝐿2-RDAE model as shown clearly 

in Fig. 8 and 9. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: B. Showing the activation value of hidden neurons after applying a noisy ECG segment 

from the testing dataset, which is corrupted with MA of noise level= 80%, to the 𝐿2-RDAE model. D. 

Displaying the corresponding weights of the selected hidden neurons, which have activation value above 

0.1. 𝐿2-RDAE model enforces dimension reduction or ‘bottleneck effect’ by making few neurons to be 

large only as shown in B. and D. 

 

Figure 9. B. Showing the activation value of hidden neurons after applying a noisy ECG segment 

from the testing dataset, which is corrupted with MA of noise level= 80%, to the 𝐿1-RDAE model. D. 

Displaying the corresponding weights of the selected hidden neurons, which have activation value above 
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0.1. The resembling of ECG is clearly demonstrated in case of 𝐿1-RDAE model due to the sparsity of 

decoder’s weights. 𝐿1-RDAE model enforces dimension reduction or ‘bottleneck effect’ by making few 

neurons to be large only as shown in B. and D. 

 

Tables 1 shows that both 𝐿1- and 𝐿2-RDAE model performed inadequately with a value of 𝜆 = 1𝑒−3, 

especially in the case of low noise levels, while they performed significantly well with a value of 𝜆 = 1𝑒−5. 

Nevertheless, the 𝐿1-RDAE model outperforms the 𝐿2-RDAE model with average signal-to-noise ratio 

improvement of 3.60 dB for 𝜆 = 1𝑒−5 in case of low noise level= 10% and 30%. However, they performed 

approximately the same for high noise level=50% and 80%. This means that the highly sparse weights of 

𝐿1-RDAE model could adequately resemble the individual morphologies of ECG segment from its noisy 

version compared to the redundant weights of 𝐿2-RDAE model as demonstrated in Fig. 6 & 7. 

Table 1. The performance of 𝐿1-RDAE model in denoising ECG from different types and levels of 

noise for 𝜆 = 1𝑒 − 3, 1𝑒 − 4 and 1𝑒 − 5. 
 

Table 1: The performance of 𝐿2-RDAE model in denoising ECG from different types and levels of noise 

for 𝜆 = 1𝑒 − 3, 1𝑒 − 4 and 1𝑒 − 5. 

 

 
4. CONCLUSION 

A regularized denoising autoencoder model was proposed in this work to capture relevant features 

that resemble the morphologies of QRS-aligned ECG segments. Compared to the classical DAE model, the 

RDAE model imposes the dimensional reduction through applying a sparsity penalty or regularizations to 

𝐿2 − 𝑅𝐷𝐴𝐸 𝜆 = 1𝑒 − 3 𝜆 = 1𝑒 − 4 𝜆 = 1𝑒 − 5 

Noise 

type 

Noise 

level 

𝑺𝑵𝑹𝒊𝒎𝒑 

[dB] 

𝑷𝑹𝑫% 𝑴𝑺𝑬 𝑺𝑵𝑹𝒊𝒎𝒑 

[dB] 

𝑷𝑹𝑫% 𝑴𝑺𝑬 𝑺𝑵𝑹𝒊𝒎𝒑 

[dB] 

𝑷𝑹𝑫% 𝑴𝑺𝑬 

MA 

10 % -12.08 6.10 9.70 e-04 -4.60 2.63 1.73 e-04 2.385 1.12 3.20e-05 

30 % -2.55 6.10 9.72 e-04 4.67 2.69 1.82 e-04 10.83 1.28 4.30e-05 

50 % 1.86 6.12 9.75 e-04 8.70 2.82 2.01 e-04 13.95 1.53 6.53e-05 

80 % 5.90 6.14 9.83 e-04 12.05 3.08 2.44 e-04 16.19 1.97 1.15 e-04 

EM 

10 % -10.05 6.19 9.95 e-04 -4.02 3.14 2.51 e-04 -0.13 1.97 1.03 e-04 

30 % -0.55 6.22 10.21 e-04 5.12 3.28 2.85 e-04 8.54 2.19 1.36 e-04 

50 % 3.79 6.28 10.34 e-04 8.96 3.53 3.32 e-04 11.75 2.55 1.91 e-04 

80 % 7.69 6.41 10.71 e-04 11.99 4.01 4.65 e-04 13.93 3.22 3.15 e-04 

BW 

10 % -14.37 6.12 9.64 e-04 -6.79 2.60 1.72 e-04 2.68 0.84 1.84 e-05 

30 % -4.83 6.12 9.66 e-04 2.68 2.62 1.74 e-04 12.01 0.86 1.97 e-05 

50 % -0.40 6.13 9.72 e-04 7.01 2.65 1.77 e-04 16.11 0.90 2.24e-05 

80 % 3.65 6.14 9.76 e-04 10.86 2.72 1.93 e-04 19.58 0.98 2.88 e-05 

GWN 

10 % -8.62 6.17 9.81 e-04 -2.38 3.04 2.32 e-04 0.73 2.08 1.12 e-04 

30 % 0.89 6.20 9.91 e-04 6.42 3.29 2.74 e-04 8.46 2.55 1.64 e-04 

50 % 5.26 6.20 10.14 e-04 9.87 3.64 3.34 e-04 10.91 3.18 2.63 e-04 

80 % 9.17 6.34 10.41 e-04 12.11 4.50 5.26 e-04 12.11 4.47 5.24 e-04 
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the weights to learn sparse feature maps instead of the redundant information in the input signals (Samann, 

Meyer & Schanze, 2023). In this work, 𝐿1 and 𝐿2 weight regularization were evaluated in denoising noisy 

ECG segments. The results clearly show that the RDAE model with a suitable regularization of weights 

can effectively capture features that resemble the morphologies of ECG signals from its noisy version. 

Moreover, 𝐿1-RDAE model could resemble the morphologies of ECG signals more efficiently with few 

large hidden neurons compared to 𝐿2-RDAE model. In other words, the 𝐿1-RDAE model optimize the 

sparse and effective representation of ECG segments, where the weights of each hidden neuron capture a 

specific feature of the ECG segments, such as P-wave, QRS-complex, and T-wave. These captured features 

could also be used to compress the data by representing the morphologies of the wanted signal with the 

activity of a few numbers of hidden neurons. Thus, RDAE can be used to find a base for effective 

representation of signal components. 
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