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ABSTRACT 
This work proposes an improved numerical methodology based on the flexibility method to study the geometric nonlinearity of space 

cable structures. The proposed approach makes use of the Pade approximation to enhance the performance of computation. The 

transformation to the Pade arrangement is particularly successful in quickly speeding up convergence and obtaining the solution when 

working with complex structures that demonstrate geometrically nonlinear properties. In contrast to previous approaches, the suggested 

method directly solves the problem by formulating an algebraic system of nonlinear equations using the Pade approximation. To arrive 

at an analytical solution, some of the most well-established methods that make use of iterative techniques include dynamic relaxation, 

finite element analysis, and minimum total potential energy. A comprehensive evaluation of the proposed technique's precision and 

reliability was conducted using six different numerical examples. The recommended method's accuracy, consistency, and computational 

efficiency are shown by carefully comparing the results with those of techniques that have been around for a long time. This work 

contributes to the advancement of numerical approaches for the analysis of complex structural behavior by providing a reliable and 

efficient alternative. Moreover, this work is beneficial for both academics and professionals working in the field. 
https://creativecommons.org/licenses/by-nc/4.0/ 
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1. Introduction 

Sources of nonlinearity in structures can be classified into three 

categories: material nonlinearity, boundary nonlinearity, and 

geometric nonlinearity. Currently, large space structures are 

requested, mainly in which the cable member structures are the 

main element in assembly. Cables provide interesting 

perspectives to form attractive spatial grid structures with high 

flexibility. It is noteworthy that cable nets show great structural 

flexibility and nonlinear response under loading conditions. 

However, the most challenging aspect of cable structure analysis 

is the absence of flexural rigidity, which results in high 

displacements. Consequently, geometric nonlinearity is required 

to be considered in the analysis of cable structures. The geometric 

nonlinearities originate when the structural deformation is 

experiencing a noticeable strain to make the cable’s stress 

sufficient to produce a state of equilibrium in deformed states. 

The efficiency of cable structures depends on prestressing to 

attain a desirable appearance and function with the required 

stability. The inserted prestressing effort offers advances in 

structural inflexibility, the lessening of structural distortion, and 

the redistribution of internal stress, proffering a more cost-

effective structure[1, 2]. As Kwan[3] stated, the behavior (initial 

stiffness) of cable nets depends on the prestressing rather than its 

axial stiffness. So, any improvement in finding new analysis 

techniques for such structures is demanded. 

Various recent methods for analyzing cable structures have been 

thoroughly reviewed[3-10]. Most recent methods insist on 

algorithmic procedures, computer operation aspects, and 

programming, which contribute to their prorated complexity. In 

contrast, the vital attention in deriving the proposed technique in 

this paper is the lucidity of the essential characteristics of cable 

structures. Therefore, the essential emphases of this paper are: i) 

to propose a new method for analyzing simple and complex cable 

structures under static loadings; and ii) to compare and evaluate 

this approach with several highly nonlinear structural problems.  

Various recent methods for analyzing cable structures have been 

reviewed, which recently exist thoroughly[3-10], and are used for 

both the static and dynamic analysis of structural cables. The 

susceptibilities of these solution approaches are dissimilar from 

each other. Most of them are very complex and require sufficient 

experience to use. In this section, four of these popular 

approaches are described briefly. 
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1.1. Finite element approach 

More than a few researchers worked on improving the flexibility 

and stiffness matrices to provide a closer nonlinearity behavior 

for the nonlinear geometrical structures. Abad et al.[11] found the 

tangent stiffness matrices of continuous and discrete cables that 

were subjected to static and thermal loads that were spread out 

and moved around. Utilizing a Gauss iteration pattern to propose 

a stiffness matrix for catenary cable, considering geometry and 

material nonlinearity, has been done by Naghavi Riabi and 

Shooshtari[7]. Crusells-Girona et al.[12] proposed a general finite 

element technique for the nonlinear analysis of cable structures 

depending on curvilinear coordinates by using a mixed 

variational formulation that used small numbers of finite 

elements for detecting nodal displacements and axial internal 

forces. Moreover, a different total Lagrangian finite element for 

geometric nonlinearity is set out by Coda et al.[13] to analyze cable 

nets and a wide-span suspended bridge.  

Whenever it comes to nonlinear structural analysis, the finite 

element approach has a number of limitations, the most 

significant of which are its computing complexity and resource 

requirements. The production of meshes in finite element analysis 

requires a significant amount of processing power and time, 

which renders it inefficient for some applications, notably those 

that include structures that are both large and complex. 

1.2. Dynamic relaxation method 

The Dynamic Relaxation Method (DRM) is a nonlinear analysis 

method of structures that presents for analyzing nonlinear 

geometrical structures attractively [14]. Meanwhile, only an 

analytical framework can perform both form-finding and 

analysis[3]. The DRM is operated to make a solution for the 

ordinary and partial differential equations as an individual or a set 

of equations. The equilibrium equations are altered to take the 

form of a simulated dynamic system. Damping force and 

fictitious mass will be added, subsequently presented in a finite-

difference formula, and solved via iterations[9, 15]. Reaching a 

steady state of equilibrium for the space dynamic equation 

expresses the result of the static equations and serves as the 

foundation for the dynamic relaxation technique[3, 9]. Damping 

coefficients, inertia mass, time step[16], and displacement[9] are the 

main criteria for controlling the speed, rate of convergence, and 

stability of the solution process. Rezaiee-Pajand and Hakkak[17] 

proposed a different procedure for dynamic relaxation by using 

Taylor series expansion. Based on utilizing the Gerschgorin circle 

theorem, Rezaiee-Pajand and Alamatian[18] suggested new 

damping and mass matrices. In the work performed by Hüttner et 

al.[19], several schemes of dynamic relaxation methods are 

proposed using viscous and kinetic damping. The cable elements 

are introduced as parabolic cable, catenary cable, and tensile bar 

elements concerning the mass distribution of the cables. In 

another study, Rezaiee-Pajand and Mohammadi-Khatami[9] used 

a dynamic relaxation scheme to generate six different stiffness 

matrices for the nonlinear geometric analysis of cables. 

Dynamic relaxation for solving the problems of static nonlinear 

structural analysis can be attained only at the steady state of the 

structure. The computational time for solving and convergence is 

essentially determined by the three parameters: the matrix of 

fictitious mass, the damping coefficient, and the incremental 

time. Thus, it requires a longer duration to pass through the 

equilibrium path to approach the solution, particularly for 

complex systems. Therefore, the quicker solver technique will be 

more efficient for computation. 

1.3. Linear and nonlinear force approach 

The fundamental equations in this method are equilibrium, 

compatibility, and flexibility relations. Improving the linear force 

method has been a focus for many researchers. For instance, 

based on the principle of virtual work, Calladine[20] confirmed 

that the transpose of the equilibrium matrix is equal to the 

compatibility matrix. The force method is primarily applied in 

analyzing prestressed spatial structures with infinitesimal 

mechanisms, and experimental work has been completed by 

Pellegrino[21] to validate this approach. Later, Pellegrino[22] 

introduced the equilibrium matrix’s singular value decomposition 

(SVD) to indicate the structural assemblies’ static and kinematic 

nature relating to the physical properties in deriving the stress and 

displacement formulation. 

This technique has been further enhanced as a nonlinear analysis 

approach for geometrically nonlinear structures. Kwan[3] reused 

the main classical equations of the force method and expressed 

the member actuation for a prestressed cable structure in terms of 

displacement using the Taylor series. In addition, Luo and Lu[23] 

extended the linear force method to analyze nonlinear geometric 

cable structures. They proposed an algorithm using SVD for the 

equilibrium matrix in every step of the iteration process. Xu and 

Luo[24], on the other hand, used the nonlinear force method to 

propose an iteration procedure for restoring the displaced joints 

and controlling the prestressed level of cable net systems. 

Similarly, Yuan et al.[25] used the nonlinear force method to 

control the stress and shape of the cable-strut structure. They 

utilized the Moore–Penrose pseudoinverse to compute the 

minimal necessary actuation. Furthermore, Manguri and Saeed[8], 

as well as Saeed, et al.[10], proposed an approximate linear force 

analysis technique. It is based on updating the joint coordinates 

of the structural geometry in every iteration for the discretized 

applied load. 

Even though different solving algorithms have been used for the 

force method in previous studies, some things still lead to 

inaccurate results. For example, using the steady states of the self-

stress matrix or the constant equilibrium matrix to come up with 

the analysis formulation is one of these things. Some studies, 

though, added geometric nonlinearity to compatibility and 

equilibrium matrices in the form of an iteration[26, 27]. So, we need 

a direct equation that can show both compatibility and 

equilibrium in the fully deformed shape as a set of algebraic 

nonlinear equations. This is what we did to come up with the 

proposed equation. 

1.4 Minimum total potential energy approach 

In this approach, any structure is in an equilibrium state when the 

total potential energy of the whole set is minimal. Based on these 

principles, a constricted gradient algorithm is proposed by 

Coyette and Guisset[28]. Additionally, Kanno and Ohsaki[29] 

looked at the structure of a cable net using a minimum 
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complementary energy principle. They did this by treating the 

stress component as a single variable and taking into account 

nonlinearities in the geometry and materials. In the same way, 

Temür et al.[30] used the minimum total potential energy principle 

to solve the truss problem with geometric nonlinearity, and the 

Particle Swarm Optimization Algorithm (PSOA) is based on it. 

The nonlinear solution is provided over MINOS as an optimized 

code. In recent investigations, Toklu et al.[31] and Branam et al.[32] 

recently did research that used meta-heuristic algorithms to solve 

nonlinear problems to minimize total potential energy. The 

minimum total potential energy approach for nonlinear structural 

analysis presents a substantial obstacle due to the demands placed 

on the processing of the technique as well as its complexity. This 

method intends to reduce the amount of energy that is used by 

successfully addressing difficult optimization issues, which may 

be demanding in terms of both time and computing resources for 

certain structural analysis applications. 

 Most recent methods of nonlinear structural analysis have 

limitations regarding computational complexity, applicability to 

complexity systems, and accuracy in modeling large 

deformations and internal member forces. The opportunity to 

circumvent these limits is what makes this study's use of the 

flexibility technique with Pade approximants remarkable. This 

approach aims to provide efficient and accurate analysis of 

nonlinear structural behavior while reducing computational 

demands and improving applicability to indeterminate systems. 

To accomplish these goals, we will be conducting comparative 

studies with current methods, expanding a technique for 

nonlinear structural analysis that utilizes the flexibility method 

with Pade approximants, and analyzing both simple and complex 

cable structures subjected to static loadings. We will also be 

demonstrating how well this methodology models large 

deformations and behavior in structural systems. 

The outline for this paper is as follows: Section 1 provides a basic 

overview of the cable net's spatial structure as well as its 

geometrically nonlinear behavior and response. In addition, a 

brief overview of the various cable net structure analysis 

techniques is provided. Section 2 describes the formulation steps 

for the proposed analysis approach. Section 3 examines 

numerical examples using the proposed technique, and Section 4 

concludes this work. 

2. Formulation of the Present Technique 

Cable-supported structures are introduced as highly flexible 

structures that distort significantly when subjected to transverse 

loads. Consequently, the extra challenge is preferred when 

analyzing these types of nonlinear geometric structures. The 

present analysis approach is based on the flexibility method's 

principles as well as structural mechanics fundamentals. The 

Pade approximation, one of the best approximations of a rational 

function of a given order, is used to derive this nonlinear 

equation. To investigate the potential of rational power series 

approximations, Frobenius[33] proposed and studied this 

approximation. Henri Eugene Pade[34] later refined it  .The Pade 

approximation is a standard rational function whose extension is 

designed to settle as far apart as possible using the primary 

function's Taylor series expansion. In most cases, the Pade 

approximation provides a better approximation for the original 

function and may be useful in situations where the Taylor series 

does not converge, particularly for functions with poles[35].  

Generally, in deriving the analysis methods for systems of cable 

elements, two element types of cables have been introduced: 

catenary (continuous and discrete) elements and truss elements. 

In this formulation, the cable element is considered a general bar 

(truss element) within the initial prestress t for preventing slack 

of the member, as shown in Figure 1. Let the bar io- jo with the 

original length L have the initial end coordinates at (xio, yio, zio) 

and (xjo, yjo, zjo). After experiencing the deformation, its length 

becomes Lc in ic-jc, and the new end coordinates are (xci, yci, zci) 

and (xcj, ycj, zcj), as shown in Figure 2. The bar in Figure 1 

undergoes deformation after being affected by external loads Pi 

and Pj at both ends; their horizontal and vertical load components 

are shown in Figure 2.  

 

Figure 1: Spatial bar coordinates at original and deformed configuration. 

 

Figure 2: Spatial element equilibrium state at original and deformed 

configuration. 

After loading, the bar experiences bar tension 𝑇and elongation e 

over its original length. The abbreviation of the notation is 

arranged as ( )o = ( )jo – ( )io. Now, by reflecting the new position 

of the joints, the current length can be written as: 

𝐿𝑐 = {(𝑥𝑜 + 𝑑𝑥𝑜)2 + (𝑦𝑜 + 𝑑𝑦𝑜)2 + (𝑧𝑜 + 𝑑𝑧𝑜)2}
1
2 

𝐿𝑐 = (𝐿2 + 2𝑥𝑜𝑑𝑥𝑜 + 2𝑦𝑜𝑑𝑦𝑜 + 2𝑧𝑜𝑑𝑧𝑜 + 𝑑𝑥𝑜
2 + 𝑑𝑦𝑜

2 + 𝑑𝑧𝑜
2)

1
2 

Let   𝐻 = 2𝑥𝑜𝑑𝑥𝑜 + 2𝑦𝑜𝑑𝑦𝑜 + 2𝑧𝑜𝑑𝑧𝑜 + 𝑑𝑥𝑜
2 + 𝑑𝑦𝑜

2 + 𝑑𝑧𝑜
2 
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𝐿𝑐 = (𝐿2 + 𝐻)
1
2 = 𝐿 (1 +

𝐻

𝐿2
)

1
2
 

The Pade approximation is applied to extend (1 +
𝐻

𝐿2)

1

2
. 

According to Vazquez-Leal, et al.[35], only the first order of the 

asymptotic expansion is taken into account because of this 

method's ability to accelerate or switch from the divergent to the 

convergent function.   

Therefore, the deformed bar length becomes (Lc) becomes: 

𝐿𝑐 = 𝐿 (
4 + 3

𝐻
𝐿2

4 +
𝐻
𝐿2

) 

Substituting H, hence: 𝐿𝑐 = 𝐿 ×

(
4+

3(2𝑥𝑜𝑑𝑥𝑜+2𝑦𝑜𝑑𝑦𝑜+2𝑧𝑜𝑧𝑦𝑜+𝑑𝑥𝑜
2+𝑑𝑦𝑜

2+𝑑𝑧𝑜
2)

𝐿2

4+
(2𝑥𝑜𝑑𝑥𝑜+2𝑦𝑜𝑑𝑦𝑜+2𝑧𝑜𝑧𝑦𝑜+𝑑𝑥𝑜

2+𝑑𝑦𝑜
2+𝑑𝑧𝑜

2)

𝐿2

) 

The elongation of the bar can be expressed as: 

𝑒 = 𝐿𝑐 − 𝐿 

Thus 

𝑒 = 𝐿 {(
4+

3(2𝑥𝑜𝑑𝑥𝑜+2𝑦𝑜𝑑𝑦𝑜+2𝑧𝑜𝑧𝑦𝑜+𝑑𝑥𝑜
2+𝑑𝑦𝑜

2+𝑑𝑧𝑜
2)

𝐿2

4+
(2𝑥𝑜𝑑𝑥𝑜+2𝑦𝑜𝑑𝑦𝑜+2𝑧𝑜𝑧𝑦𝑜+𝑑𝑥𝑜

2+𝑑𝑦𝑜
2+𝑑𝑧𝑜

2)

𝐿2

) − 1}             (1) 

From the state of equilibrium for the deformed configuration, as 

shown in Figure 2, the relationship between the internal and 

external forces and each of their components can be described as 

shown below: 

𝑃𝑖 = −(𝑇 + 𝑡) = −𝑃𝑗 

Consequently, for each component in 3D, it becomes: 

𝑃𝑥𝑖 = −(𝑇 + 𝑡) 𝑐𝑜𝑠 𝛼 = −𝑃𝑥𝑗  

𝑃𝑦𝑖 = −(𝑇 + 𝑡) 𝑐𝑜𝑠 𝛽 = −𝑃𝑦𝑗  

𝑃𝑧𝑖 = −(𝑇 + 𝑡) 𝑐𝑜𝑠 𝛾 = −𝑃𝑧𝑗 

Moreover, the terms of 𝑐𝑜𝑠 𝛼,𝑐𝑜𝑠 𝛽 and 𝑐𝑜𝑠 𝛾with neglecting the 

high order of small displacements, can be in the form: 

𝑐𝑜𝑠 𝛼 =
𝑥𝑜 + 𝑑𝑥𝑜

𝐿𝑐

=
4𝑥𝑜𝐿2 + 4𝑑𝑥𝑜𝐿2 + 2𝑥𝑜

2𝑑𝑥𝑜 + 2𝑥𝑜𝑦𝑜𝑑𝑦𝑜 + 2𝑥𝑜𝑧𝑜𝑑𝑧𝑜

4𝐿3 + 6𝐿(𝑥𝑜𝑑𝑥𝑜 + 𝑦𝑜𝑑𝑦𝑜 + 𝑧𝑜𝑑𝑧𝑜)
 

𝑐𝑜𝑠 𝛽 =
𝑦𝑜 + 𝑑𝑦𝑜

𝐿𝑐

=
4𝑦𝑜𝐿2 + 4𝑑𝑦𝑜𝐿2 + 2𝑦𝑜𝑥𝑜𝑑𝑥𝑜 + 2𝑦𝑜

2𝑑𝑦𝑜 + 2𝑦𝑜𝑧𝑜𝑑𝑧𝑜

4𝐿3 + 6𝐿(𝑥𝑜𝑑𝑥𝑜 + 𝑦𝑜𝑑𝑦𝑜 + 𝑧𝑜𝑑𝑧𝑜)
 

𝑐𝑜𝑠 𝛾 =
𝑧𝑜 + 𝑑𝑧𝑜

𝐿𝑐

=
4𝑧𝑜𝐿2 + 4𝑑𝑧𝑜𝐿2 + 2𝑧𝑜𝑥𝑜𝑑𝑥𝑜 + 2𝑧𝑜𝑦𝑜𝑑𝑦𝑜 + 2𝑧𝑜

2𝑑𝑧𝑜

4𝐿3 + 6𝐿(𝑥𝑜𝑑𝑥𝑜 + 𝑦𝑜𝑑𝑦𝑜 + 𝑧𝑜𝑑𝑧𝑜)
 

Employing the constitutive relationship between the tensile force 

of the bar and its elongation can be set up in the form:  

𝑒 =
𝑇𝐿

𝐸𝐴𝑜
                   (2) 

where E is the modulus of elasticity, and Ao is the cross-sectional 

area of the cable.  

By equalizing both Equations (1) and (2), the general analytical 

equation for geometrically nonlinear cable and pin-jointed 

structures is formulated as below: 

{(
4𝐿2+3(2𝑥𝑜𝑑𝑥𝑜+2𝑦𝑜𝑑𝑦𝑜+2𝑧𝑜𝑑𝑧𝑜+𝑑𝑥𝑜

2+𝑑𝑦𝑜
2+𝑑𝑧𝑜

2)

4𝐿2+(2𝑥𝑜𝑑𝑥𝑜+2𝑦𝑜𝑑𝑦𝑜+2𝑧𝑜𝑑𝑧𝑜+𝑑𝑥𝑜
2+𝑑𝑦𝑜

2+𝑑𝑧𝑜
2)

) −1} −
𝑇

𝐸𝐴𝑜
= 0   (3) 

Notably, the proposed method is applicable for the analysis of 

both simple and complex rigid types of pin-joined spatial 

structures and can be generalized. 

3. Numerical Examples 

For validation and presentation of the precision of the proposed 

nonlinear approach, six numerical examples from the quoted 

literature have been examined. Then, the results were compared 

with the findings of the previous analysis techniques. Different 

tactics may be used to solve the set of nonlinear equations. In the 

current work, the nonlinear equation's solution was obtained by 

using MATLAB's fsolve function. By reducing the sum of 

squares of the components, the function fsolve determines the 

solution of a simultaneous system of equations.  When the sum of 

squares approaches zero, the set of nonlinear equations is solved. 

3.1. Example 1 – Two-linked structure 

The two-linked structure is pre-tensioned by 4448.2 N, as shown 

in Figure 3. Each link has EAo= 546920 N, which is examined 

via the present new technique. The middle joint vertical 

displacement and each internal bar force showed -166.457 mm 

and 303.193 N, respectively. Accordingly, the analysis of the 

same structure was presented by Kwan[3] as -166.449 mm and 

303.246 N for the same target, respectively. Besides, Levy and 

Spillers[4] conveyed -166.536 mm and 303.413 N, respectively. 

The outcomes showed that the current approach has a discrepancy 

of only 0.004% and 0.04% in displacement with Kwan[3] and 

Levy and Spillers[4], respectively. At the same time, the tensile 

force deviations were only 0.02% and 0.07%. 

 

Figure 3: Two-linked structure with nodal external load. 

3.2. Example 2 – Flat cable net structure 

Figure 4 shows a 3×3 square grid of flat cable net structure, which 

has been numerically evaluated by numerous studie[3, 16, 31]. It has 

a 400 mm length of cell sides, an EA of 97970 N, and is 

prestressed with 200 N. The system has 12 joints. It is supported 

at its perimeter by 8 joints, leaving 4 inner joints free. It was 

loaded by 15 N at three positions, as shown in Figure 4. The 
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present formulation is applied to the flat cable net system and then 

compared with the quoted literature. The results are presented in 

Tables 1 and 2 for the joint displacements and cable tensions, 

respectively, which are very accurate with the other techniques. 

 

 

Figure 4: Flat cable net structure with nodal external loads. 

Table 1: Nodal displacement (mm) of internal joints for the flat cable net structure in Figure 4. 

Node 
Present Technique Kwan [3] Lewis [16] Toklu, et al. [31] 

dx dy dz dx dy dz dx dy dz dx dy dz 

4 -0.07 -0.07 -12.17 -0.08 -0.08 -12.2 -0.1 -0.1 -12.2 -0.07 -0.07 -12 

5 -0.08 0.04 -11.18 -0.08 0.05 -11.2 -0.1 0 -11.2 -0.08 0.04 -11 

8 0.04 -0.08 -11.18 0.04 -0.08 -11.2 0 -0.1 -11.2 0.04 -0.08 -11 

9 -0.04 -0.04 -5.59 -0.04 -0.04 -5.59 0 0 -5.6 -0.04 -0.04 -5.6 

Table 2: Cable tensile forces (N) of the flat cable net structure in Figure 4 

Cable Present technique Kwan[3] Lewis[16] 

1 227.97 227.97 228.10 

2 219.19 219.19 219.30 

3 227.97 227.98 - 

4 227.94 227.94 228.00 

5 228.00 228.01 228.10 

6 227.94 227.94 219.20 

7 219.14 219.15 219.10 

8 219.19 219.19 - 

9 219.14 219.15 - 

10 219.07 219.08 219.10 

11 228.00 228.01 - 

12 219.07 219.08 - 

 

3.3. Example 3 – Spatial net structure 

In this example, a spatial cable net structure consists of a grid 

system with 24 m in the x-direction and 16 m in the y-direction, 

as shown in Figure 5. It has 38 cables with an EAo of 56×106 N 

and 19.2×106 N in the x and y-directions, respectively. Due to its 

central symmetry, the z-direction coordinates (z-coor.) are given 

for only a quarter of the net assembly, as presented in Table 3. 

The system is pre-tensioned by 90,000 N in the x- and 30,000 N 

in the y- direction[3, 16, 31]. The present technique was applied to 

obtain the displacements after applying the vertical point loads of 

6800 N at all internal joints. The attained displacements were 

compared with the numerical findings by Lewis[16], Abad, et al.[11] 

and Toklu, et al.[31], as presented in Table 3. These results 

confirmed a remarkable similarity with the established 

techniques.
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Figure 5: Spatial net structure with nodal labels and panel spacing. 

Table 3: Nodal displacements comparison (mm) of the spatial net structure in Figure 5 by different methods 

Node z-coor. 
Present Technique Lewis [16] Abad, et al. [11] Toklu, et al. [31] 

dx dy dz dx dy dz dx dy dz dx dy dz 

1 1000 --- --- --- --- --- --- --- --- --- --- --- --- 

2 2000 --- --- --- --- --- --- --- --- --- --- --- --- 

3 3000 --- --- --- --- --- --- --- --- --- --- --- --- 

6 0 --- --- --- --- --- --- --- --- --- --- --- --- 

7 819.5 -5.03 0.40 29.47 -5.14 0.42 30.41 -5.05 0.40 29.6 -5.03 0.40 29.46 

8 1409.6 -2.23 0.40 17.12 -2.26 0.47 17.70 -2.23 0.40 17.16 -2.22 0.39 17.18 

9 1676.9 0 2.39 -3.19 0 -2.27 -3.62 0 -2.36 -3.19 0 -3.12 -3.19 

13 0 --- --- --- --- --- --- --- --- --- --- --- --- 

14 687.0 -4.93 0 42.88 -4.98 0 43.49 -4.93 0 42.94 -4.92 0 42.84 

15 1147.8 -2.55 0 44.32 -2.55 0 44.47 -2.55 0 44.34 -2.55 0 44.27 

16 1317.6 0 0 42.14 0 0 41.65 0 0 42.14 0 0 42.08 

 

3.4. Example 4 – Hyperbolic paraboloid net structure 

A hyperbolic paraboloid net system featuring 26 joints and 31 

cables with 36 degrees of freedom is depicted in Figure 6. A 

hyperbolic paraboloid net system featuring 26 joints and 31 

cables with 36 degrees of freedom is depicted in Figure 6. The 

axial stiffness of all members is 100200 N. The structure is 

concentrically loaded by 15.7 N in the z-direction at all internal 

nodes except 17, 21, and 22. The cable segments carry an amount 

of 200 N of pretension force. Several authors[3, 5, 14, 16, 31] have 

numerically and experimentally examined this net system by 

utilizing different analysis techniques. Such as dynamic 

relaxation (DR), which is used by Lewis[36] and Kwan[3], while 

approximation of Taylor series (ATS), elastic catenary cable 

element in finite element, and total potential optimization were 

used by Thai and Kim[5] and Toklu, et al.[31], respectively. The 

results for the vertical displacements of the current and previously 

published methods are presented in Table 4. Comparing the 

emphasized methodologies to the current results revealed a high 

level of accuracy and similarity.
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Figure 6: Hyperbolic paraboloid net structure with nodal labels and panel spacing. 

Table 4: Nodal displacements comparison (mm) in the z-direction of hyperbolic paraboloid net structure in Figure 6 by different methods. 

Node 
Present 

technique 

Lewis, et al. 
[14] 

Experiment 

Lewis, et al. 
[14] 

DR 

[3] 

DR 

[3] 

ATS 
Thai and Kim [5] Toklu, et al. [31] 

5 19.53 19.50 19.30 19.38 19.52 19.56 19.48 

6 24.66 25.30 25.30 25.62 25.35 25.70 25.59 

7 23.32 22.80 23.00 22.95 23.31 23.37 23.17 

10 25.88 25.40 25.90 25.57 25.86 25.91 25.75 

11 34.08 33.60 33.80 33.79 34.05 34.16 33.86 

12 29.52 28.80 29.40 29.32 29.49 29.60 29.27 

15 25.81 25.20 26.40 25.43 25.79 25.86 25.65 

16 31.33 30.60 31.70 31.11 31.31 31.43 30.96 

17 21.43 21.00 21.90 21.28 21.42 21.56 21.03 

20 21.49 21.00 21.90 21.16 21.48 21.57 21.33 

21 20.01 19.80 20.50 19.79 20.00 20.14 19.67 

22 14.41 14.20 14.80 14.29 14.4 14.55 14.04 

 

3.5. Example 5 – Saddle net structure 

As seen in Figure 7, the preliminary geometry of the saddle net 

structure consists of 95 joints, 32 of which are constrained at the 

perimeter, and 142 cables with an EAo of 44.982×106 N. It has 

mirror symmetry about both centerlines; each segment has a 5000 

mm distance in both x and y-directions, and the z-coordinates (z-

coor.) for one-fourth of the structure are given in Table 5. The 

saddle net structure was completed by a tensile prestressing force 

of 60,000 N and was affected by concentrated loads of 1000 N in 

x- and y-directions at the half of free nodes (11-15, …., 66-70, 

and 77-81). The analysis of the proposed method is presented in 

Table 5. After comparing it to previous approaches by[3, 36], Thai 

and Kim[5], and both discrete and continuous catenary cable 

models by Abad, et al.[11], it demonstrated good accuracy and was 

confirmed to be comparable with well-known methods. The 

maximum percentage of error for the present technique, Kwan[3] 

and Thai and Kim[5], as compared to experimental work 

performed by Lewis[36], is not exceeded by 3.87%, while they are 

5.81% and 4.91% for the discrete and continuous models of 

Abad, et al.[11], respectively, as presented in Table 5. In most 

studies, the saddle net is introduced as the most complex cable 

structure and an outstandingly comparable problem. It is used to 

confirm the effectiveness of the analysis techniques. As Lewis[16] 

said, the saddle net analysis failed when using the finite element 

method because of an ill-condition issue for such a complicated 

assembly. 
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Figure 7: Saddle net structure with nodal labels and panel spacing. 

Table 5: Nodal displacements comparison (mm) of saddle net structure in Figure 7 by different methods. 

Node z-coor. 
Lewis [16] 

experiment 

Present 

Technique 
Kwan [3] Thai and Kim [5] 

Abad, et al. [11] 

d discrete 

Abad, et al. [11] 

d continuous 

1 3632 0 0 0 0 0 0 

2 2568 0 0 0 0 0 0 

3 1808 0 0 0 0 0 0 

4 1352 0 0 0 0 0 0 

5 1200 0 0 0 0 0 0 

10 5000 0 0 0 0 0 0 

11 3968 83.53 83.28(0.29) 83.28(0.29) 83.24(0.34) 83.46(0.08) 83.38(0.17) 

12 3165 62.85 62.55(0.48) 62.54(0.49) 62.5(0.56) 62.68(0.27) 62.6(0.4) 

13 2592 34.57 34.38(0.55) 34.38(0.55) 34.34(0.67) 34.47(0.29) 34.43(0.4) 

14 2248 19 18.92(0.42) 18.92(0.42) 18.91(0.47) 19.02(-0.11) 18.96(0.21) 

15 2133 12.27 12.21(0.49) 12.22(0.41) 12.21(0.49) 12.29(-0.16) 12.26(0.08) 

21 5000 0 0 0 0 0 0 

22 4208 98.4 98.27(0.13) 98.27(0.13) 98.23(0.17) 98.57(-0.17) 98.42(-0.02) 

23 3592 74.02 73.9(0.16) 73.9(0.16) 73.84(0.24) 74.17(-0.2) 74.03(-0.01) 

24 3152 32.84 32.93(-0.27) 32.93(-0.27) 32.89(-0.15) 33.14(-0.91) 33.03(-0.58) 

25 2882 11.88 12.15(-2.27) 12.15(-2.27) 12.14(-2.19) 12.33(-3.79) 12.24(-3.03) 

26 2800 12.68 12.32(2.84) 12.32(2.84) 12.32(2.84) 12.12(4.42) 12.21(3.71) 

32 5000 0 0 0 0 0 0 

33 4352 93.19 93.19(0) 93.19(0) 93.15(0.04) 93.56(-0.4) 93.38(-0.2) 

34 3848 67.56 67.65(-0.13) 67.65(-0.13) 67.6(-0.06) 68.02(-0.68) 67.84(-0.41) 

35 3488 20.81 21.2(-1.87) 21.2(-1.87) 21.16(-1.68) 21.51(-3.36) 21.36(-2.64) 

36 3272 15.49 14.89(3.87) 14.89(3.87) 14.89(3.87) 14.59(5.81) 14.73(4.91) 

37 3200 36.85 36.09(2.06) 36.09(2.06) 36.07(2.12) 35.77(2.93) 35.9(2.58) 

43 5000 0 0 0 0 0 0 

44 4400 - 89.36 89.36 89.31 89.75 89.56 

45 3933 - 63.44 63.44 63.38 63.84 63.65 

46 3600 - 15.16 15.16 15.12 15.49 15.34 

47 3400 - 22.99 22.99 22.99 22.65 22.80 

48 3333 - 46.11 46.12 46.09 45.74 45.89 

52 4400 - 5.93 5.93 5.93 6.34 6.17 

72 3152 - 30.37 30.38 30.36 30.07 30.19 

81 2133 - 12.21 12.22 12.21 12.29 12.26 

85 3968 - 32.67 32.67 32.65 32.89 32.79 

85 3968 - 32.67 32.67 32.65 32.89 32.79 
()* shows the error percentage of the proposed technique and other quoted techniques concerning Lewi’'s experimental work. 
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3.6. Example 6 – Cantilever truss structure 

A simple cantilever truss, as shown in Figure 8, consists of six 

nodes and ten bars with an axial stiffness of 400,000 N. It is pin-

supported at node number one and roller-supported at node 

number two. The two external point loads are applied on nodes 3 

and 5 with quantities of 1000 N and 3000 N in the gravity 

direction, respectively. The cantilever truss has been previously 

used by Saeed and Kwan[35] using the linear force method. The 

linear analysis results were obtained using the least squares 

solution. The proposed nonlinear force method is applied for 

analyzing the same cantilever truss, and both of the findings are 

presented in Table 6. SAP2000 software is also used for the 

purpose of comparison, precision, and validation of the results. 

The output of the software analysis is basically based on finite 

element analysis with an improved tangent stiffness matrix, and 

the results for displacement and member forces are presented in 

columns 2-4 in Table 6. To assess the proposed method's 

accuracy and utility, the Euclidean Norm index for internal forces 

(linear and nonlinear) error to internal force from SAP2000 is 

used. The accuracy evaluation ratio (RT) of l2-Norm is found 

using Equation (5), where T1 and T2 are the member forces of the 

linear force method and SAP2000, respectively. The percent 

Euclidian norm ratio between linear and SAP2000 was 2.23%, 

while between the proposed technique and SAP2000, it was 

0.05%. These ratios clearly show the precision of the present 

approach in considering the geometric nonlinearity during the 

analysis stage of spatial structures. Further, it can be noticed that 

neglection from the geometric deformability in the linear force 

method leads to giving the internal force of bar number 7 as zero. 

That is due to using the equilibrium matrix in its original 

configuration and the zero coefficient of the state of self-stress 

found in the null of the equilibrium matrix. 

𝑅𝑇 =
‖𝑇−𝑇2‖2

‖𝑇2‖2
× 100

𝑅𝑇1
=

‖𝑇1−𝑇2‖2

‖𝑇2‖2
× 100

                (5)

 

 

Figure 8: Cantilever truss structure with nodal labels, panels spacing, and nodal loads. 

Table 6: Nodal displacements (mm) and internal bar forces (N) computation of the cantilever truss structure in Figure 8 by SAP2000 software, linear 

and nonlinear force methods  

Nodes 

Nonlinear Analysis 

by SAP2000 

Linear Analysis 

by Saeed and Kwan [37] 

Nonlinear Analysis 

present Study 

Bars Nonlinear 

Displacement 
Member 

Force 

Linear 

Displacement 
Member 

Force 

Nonlinear 

Displacement 
Member 

Force 
dx dy dx dy dx dy 

2 0 -0.465 
1858.4 

0 -0.500 
2000 

0 -0.465 
1858.5 1 

5105.6 5000 5107.4 2 

3 1.227 -3.149 
-2836.8 

1.250 -3.164 
-2828 

1.228 -3.150 
-2837.8 3 

2751.8 2828 2752.4 4 

4 -1.265 -2.604 
-4967.4 

-1.250 -2.664 
-5000 

-1.266 -2.605 
-4970 5 

-2055.8 -2000 -2056 6 

5 1.061 -9.334 
98.3 

1.250 -9.286 
0 

1.061 -9.335 
98.683 7 

4304.7 4243 4303.1 8 

6 -2.195 -8.532 
-3012.1 

−2.000 −8.536 
-3000 

-2.195 -8.533 
-3009.4 9 

-2995.5 -3000 -2993.9 10 

Euclidian Norm Ratio  RT1 2.23%  RT 0.05%  
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5. Conclusions 

A relatively simple numerical analysis method for geometric 

nonlinearity has been proven in this paper, which provides 

analysis for cable net and pin-jointed structures with significant 

accuracy. The method is derived based on the principle of 

flexibility method via the Pade approximation method, which 

presents the strength of the technique to lead to vastly accurate 

results via rational approximate solutions. The proposed 

technique was applied to five numerical examples: two-lined 

structure, flat cable net, spatial net, hyperbolic paraboloid net, and 

saddle net systems. The analysis outcomes of the proposed 

method were compared to those of several established methods. 

The proposed approach offers excellent agreement with the other 

techniques and can be applied to complicated cable net structures. 

The advantage of the method is its easy access; rather, this 

approach has been confirmed to be identical to other reputable 

techniques for the accuracy of the solution and swiftness of the 

calculating process. 
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