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ABSTRACT 

This study aims to develop a very accurate method for solving reaction-diffusion systems with Numman boundary conditions. Our 
approach combines an explicit Runge-Kutta method for the temporal aspect with a 4th-order compact finite difference (CFD) technique 
for spatial dimension. Moreover, we employ a 4th-order precise CFD technique to discretize the boundary points. At the core of our 
methodology lies the utilization of the method of lines (MOL). This approach strategically enables us to effectively incorporate explicit 
Runge-Kutta methods, known for their fifth-order precision in the temporal domain. Consequently, our approach achieves high-order 
precision in the temporal and spatial domains, which leads to a noteworthy reduction in the computational costs associated with the 
scheme. The combination of explicit Runge-Kutta methods and compact finite difference approaches yields a dependable and accurate 
solution to solve the reaction-diffusion system, according to numerical experiments. 

https://creativecommons.org/licenses/by-nc/4.0/ 
Keywords: Explicit Runge-Kutta method, Compact finite difference method, Reaction-Diffusion System.

1. Introduction 

The higher-order compact finite difference (HOCFD) method 

stands out as a widely employed and highly flexible technique for 

addressing partial differential equations (PDEs). Specifically, in 

the realm of linear and non-linear parabolic problems with 

Dirichlet boundary conditions, there has been a noticeable surge 

in interest, this has led to a substantial body of literature, 

including references[1], that comprehensively explains and makes 

accessible the method's implementation. 

However, there has been comparatively less progress in the 

development of high-order numerical techniques to solve 

problems involving Neumann boundary conditions[1–3]. A fourth-

order CFD technique was presented by Cao et al.[1] in order to 

solve the convection-diffusion system. Their approach utilized a 

4th-order CFD method to discretize both boundary and interior 

points. Yao et al.[2] proposed a 4th-order CFD method to solve a 

simulated moving bed's model equation. They offered two 

distinct approaches, namely the pseudo grid point technique and 

the direct technique, to effectively handle the challenges posed 

by boundary conditions. A high-order exponential approach was 

used by Fu et al.[3] to solve the convection-diffusion equation. 

They developed a 4th-order compact exponential difference 

method. 

Our aim is to propose a cutting-edge numerical approach to solve 

system (1) at 4th-order spatial and 5th-order temporal accuracy 

with particular components. Our approach involves discretizing 

the time integration within the spatial derivative with high-order 

precision using an explicit Runge-Kutta scheme and CFD 

approximation. This approach results in the formulation of a non-

linear system of ODEs. 

Even though the diffusive Lotka-Volterra System has been solved 

numerically before, as references[4] and[5] show, previous efforts 

mainly focused on achieving only 1st-order or 2nd-order 

precision at the boundary locations. The primary issues in our 

work are constructing a high order compact finite difference 

(HOCFD) approach to the boundary points and effectively 

resolving the non-linear reaction term. We use methods 

introduced by reference[1] to address boundary points and the 

ERK (explicit Runge-Kutta) method to solve the non-linear 

component to get over these challenges. It will be important to 

highlight that our adoption of the IMEX-RK (Implicit-Explicit 

Runge-Kutta) technique is motivated by the need to employ 

implicit techniques to solve the explicit methods for the non-

linear term and linear term in the differential equations. This 
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approach enhances the overall stability and efficiency of our 

numerical method.  

Because of their intricate nature, solving systems of ODEs can be 

difficult because analytical solutions are frequently unachievable. 

Moreover, these systems frequently involve multiple time scales 

that evolve simultaneously. Consequently, researchers have 

dedicated substantial effort to address these issues, resulting in 

the development of a range of numerical techniques over the 

years. Among these techniques, the Explicit Runge-Kutta method 

(ERK) has garnered significant attention for its effectiveness in 

solving problems expressed within a system of differential 

equations, such as equation (1). For a more comprehensive 

exploration of these numerical methods and their applications, 

please refer to[6]. Among these techniques, the Explicit Runge-

Kutta method (ERK) has garnered significant attention for its 

effectiveness in solving problems expressed within a system of 

differential equations, such as equation (1). For a more 

comprehensive exploration of these numerical methods and their 

applications, please refer to[7-8]. 

The following outline will describe how the remaining sections 

of this work will be arranged: We present the model problem and 

describe a 4th-order CFD approach that can be applied to both 

interior and boundary points in the second section. In the third 

section, we delve into the exposition of the ERK technique. 

Section 4 is dedicated to showcasing practical numerical 

experiments. Lastly, Section 5 encapsulates our conclusions and 

summarizes the key findings derived from this study. 

A groundbreaking theory regarding morphogenesis, the process 

through which structures develop within an organism throughout 

its life, was introduced in a significant publication by Turing in 

1952[9]. From a mathematical standpoint, Turing's concept 

immediately opens the door to the creation of reaction-diffusion 

systems (RDSs) that go beyond individual equations. These 

systems are capable of demonstrating what is referred to as 

Turing instability, as exemplified in[10]. Contemporary non-linear 

models are employed to represent a broad spectrum of 

phenomena across medicine, ecology, chemistry, biology, 

physics, and other fields. Among these models, non-linear RDSs 

serve as the foundational equations for many widely recognized 

non-linear models. This study aims to develop an exact method 

for solving reaction-diffusion systems with Numman boundary 

conditions. Our approach combines explicit Runge-Kutta and 

4th-order compact finite difference techniques for temporal and 

spatial aspects, respectively. 

Consider the reaction-diffusion system (RDS):  

𝑢𝑡 − 𝛼𝑢𝑥𝑥 = 𝑓(𝑡, 𝑥, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)),   

𝑣𝑡 − 𝛽𝑣𝑥𝑥 = 𝑔(𝑡, 𝑥, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)), 

𝑎 ≤ 𝑥 ≤ 𝑏, 𝑎𝑛𝑑 0 ≤  𝑡 ≤ 𝑇. …………………………………...1 

Depending on the following conditions: 

The initial condition at t = 0: 

𝑢(𝑥, 0) = 𝑢0(𝑥) = �̅�(𝑥),

𝑣(𝑥, 0) = 𝑣0(𝑥) = �̿�(𝑥).
..........................................................2a                                            

The Dirichlet boundary conditions at 𝑥 = 𝑎 and 𝑥 = 𝑏: 

𝑢(𝑎, 𝑡) = ∅̅𝑎(𝑡),            𝑢(𝑏, 𝑡) = ∅̅𝑏(𝑡),

𝑣(𝑎, 𝑡) = ∅̿𝑎(𝑡),            𝑣(𝑏, 𝑡) = ∅̿𝑏(𝑡).
 ……………………2b 

Moreover, the Neumann boundary conditions 

𝜕𝑢

𝜕𝑥
|
𝑥=𝑎

= �̌�(𝑡),            
𝜕𝑢

𝜕𝑥
|
𝑥=𝑏

= �̂�(𝑡),

𝜕𝑣

𝜕𝑥
|
𝑥=𝑎

= �̌�(𝑡),            
𝜕𝑣

𝜕𝑥
|
𝑥=𝑏

= �̂�(𝑡),
 ………………………2c 

where 𝑢(𝑥, 𝑡) and 𝑣(𝑥, 𝑡) represent the concentrations or values 

of the first and second species at position 𝑥 and time 𝑡, 
respectively. Also, 𝛼 and 𝛽 are parameters representing the 

diffusion coefficients for 𝑢 and 𝑣, respectively. Furthermore, 

𝑓(𝑢, 𝑣) and 𝑔(𝑢, 𝑣) are the reaction terms that describe how 𝑢 

and 𝑣 interact with each other. These terms may involve non-

linear functions of 𝑢 and 𝑣, and they govern how the 

concentrations of 𝑢 and 𝑣 change over time. 

2. Creation of Compact Finite Differencing Algorithms of 

Fourth-Order 

2.1 The spatial interior points 

Consider the system of differential equations 

𝛼
𝑑2𝑈

𝑑𝑥2
+ 𝑓 = 𝑙(𝑥),

𝛽
𝑑2𝑉

𝑑𝑥2
+ 𝑔 = 𝑚(𝑥),

……………………………………………..3 

We designate 𝛿𝑥
2  as the widely recognized central difference 

scheme for computing the second derivative of 𝑈 and 𝑉 at the 

location 𝑥𝑖 within a uniform grid characterized by mesh sizes ℎ. 

We will get the following discrete equations: 

𝛼𝛿𝑥
2𝑈𝑖 + 𝑓 − 𝜏𝑖

1 = 𝑙𝑖 , …………………………………………..4 

𝛽𝛿𝑥
2𝑉𝑖 + 𝑔 − 𝜏𝑖

2 = 𝑚𝑖 , …………………………………………5 

where  

𝛿𝑥
2𝑈𝑖 =

𝑈𝑖+1 − 2𝑈𝑖 + 𝑈𝑖−1
ℎ2

+
ℎ2

12
[
𝑑 
4𝑈

𝑑𝑥4
]
𝑖

+ 𝑂(ℎ4),                       

𝛿𝑥
2𝑉𝑖 =

𝑉𝑖+1−2𝑉𝑖+𝑉𝑖−1

ℎ2
+

ℎ2

12
[
𝑑 
4𝑉

𝑑𝑥4
]
𝑖
+ 𝑂(ℎ4), …………………….6 

 𝜏𝑖
1 =

𝛼ℎ2

12
[
𝑑 
4𝑈

𝑑𝑥4
]
𝑖

+ 𝑂(ℎ4), and  𝜏𝑖
2 =

𝛽ℎ2

12
[
𝑑 
4𝑉

𝑑𝑥4
]
𝑖

+ 𝑂(ℎ4). 

Our objective is to estimate the primary term in equation (6) and 

incorporate it into the difference formulation to achieve a method 

with 𝑂(ℎ4) accuracy. Assuming the solution exhibits adequate 

regularity, we can attain this by taking the derivative of the 

system (3), resulting in: 

𝑑3𝑈

𝑑𝑥3
|
𝑖
=

1

𝛼
[−

𝑑𝑓

𝑑𝑥  
+

𝑑𝑙

𝑑𝑥  
]
𝑖
,  ………………………………………..7 

𝑑4𝑈

𝑑𝑥4
|
𝑖
=

1

𝛼
[−

𝑑2𝑓

𝑑𝑥2
+

𝑑2𝑙

𝑑𝑥2
]
𝑖
,  ………………………………………8 
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𝑑3𝑉

𝑑𝑥3
|
𝑖
=

1

𝛽
[−

𝑑𝑔

𝑑𝑥 
+

𝑑𝑚

𝑑𝑥 
]
𝑖
,………………………………………...9 

𝑑4𝑉

𝑑𝑥4
|
𝑖
=

1

𝛽
[−

𝑑2𝑔

𝑑𝑥2
+

𝑑2𝑚

𝑑𝑥2
]
𝑖
……………………………………...10 

By substituting (7) and (8) into the truncation error (𝜏𝑖
1), we will 

get the following: 

𝜏𝑖
1 =

ℎ2

12
[−

𝑑2𝑓

𝑑𝑥2
+

𝑑2𝑙

𝑑𝑥2
]
𝑖
+ 𝑂(ℎ4) ……………………………...11 

Put the value of 𝜏𝑖
1 in (4), it yields: 

𝛼𝛿𝑥
2𝑈𝑖 + 𝑓 −

ℎ2

12
[−𝛿𝑥

2𝑓 + 𝛿𝑥
2𝑙]𝑖 = 𝑙𝑖 + 𝑂(ℎ

4), ……………….12 

Similarly, for the Eq. (4), we have: 

𝛽𝛿𝑥
2𝑉𝑖 + 𝑔 −

ℎ2

12
[−𝛿𝑥

2𝑔 + 𝛿𝑥
2𝑚]𝑖 = 𝑚𝑖 + 𝑂(ℎ

4),  ……………13 

which we can use (12) and (13) to increase the accuracy of our 

approximation (4) and (5). Our method produces a fourth-order 

compact scheme as a result. The problem's solution domain 

[𝑎, 𝑏] × [0, 𝑇] is overlaid with a grid mesh of lines.  

𝑥𝑖 = 𝑖ℎ, 𝑖 = 0, 1, 2,⋯ , 𝑛, 

𝑡𝑗 = 𝑗𝜏, 𝑗 = 0, 1, 2,⋯ ,𝑚, 

In the context of spatial and temporal coordinates, we establish 

parallel axes. To approximate the value 𝑈(𝑥𝑖 , 𝑡𝑗), we perform 

calculations at the intersection point of these axes, denoted as 

(𝑖, 𝑗) grid-point. The spatial and temporal grid spacings remain 

constant, where ℎ represents the spatial grid spacing defined as 

ℎ = (𝑏 − 𝑎)/𝑛, and 𝜏 represents the temporal grid spacing 

defined as 𝜏 = 𝑇/𝑚. The discretization of the system (3) 

spatially, at the point through the equation (12), followed by 

subsequent simplification and substitution of 𝑙 and 𝑚 by 𝑢𝑡 and 

𝑣𝑡 respectively, at the grid points, yields the following 

expression: 

𝑑𝑈(𝑡)

𝑑𝑡
|
𝑖−1

 

+ (12𝛼 − 2)
𝑑𝑈(𝑡)

𝑑𝑡
|
𝑖

 

+
𝑑𝑈(𝑡)

𝑑𝑡
|
𝑖+1

 

 

=
12𝛼2

ℎ2
𝑈𝑖−1(𝑡) −

24𝛼2

ℎ2
𝑈𝑖(𝑡) +

12𝛼2

ℎ2
𝑈𝑖+1(𝑡) + 𝑓𝑖−1 + (12𝛼 −

2)𝑓𝑖 + 𝑓𝑖+1,  …………………………………………………...14 

Also for the equation (13) 

𝑑𝑉(𝑡)

𝑑𝑡
|
𝑖−1

 

+ (12𝛽 − 2)
𝑑𝑉(𝑡)

𝑑𝑡
|
𝑖

 

+
𝑑𝑉(𝑡)

𝑑𝑡
|
𝑖+1

 

 

=
12𝛽2

ℎ2
𝑉𝑖−1(𝑡) −

24𝛽2

ℎ2
𝑉𝑖(𝑡) +

12𝛽2

ℎ2
𝑉𝑖+1(𝑡) + 𝑔𝑖−1 + (12𝛽 −

2)𝑔𝑖 + 𝑔𝑖+1, …………………………………………………..15 

2.2 The boundary spatial points 

When the left and right boundaries were first deduced, the 

Neumann boundary conditions could be applied. For the left 

boundary conditions of 𝑈(𝑥, 𝑡), with the Taylor expansions of 

𝑈(𝑥1, 𝑡) and 𝑈(𝑥2, 𝑡), the first derivative of 𝑈(𝑥, 𝑡) at 𝑥0 can be 

expressed as:  

𝑑𝑈(𝑡)

𝑑𝑥
|
𝑖=0

 

=
−3𝑈𝑖(𝑡)+4𝑈𝑖+1(𝑡)−𝑈𝑖+2(𝑡)

2ℎ
|
𝑖=0

 

+
ℎ2

3

𝑑3𝑈(𝑡)

𝑑𝑥3
|
𝑖=0

 

+

ℎ3

4

𝑑4𝑈(𝑡)

𝑑𝑥4
|
𝑖=0

 

+ 𝑂(ℎ4) …………………………………………16 

Also, for the right boundary conditions of 𝑢(𝑥, 𝑡), we have: 

𝑑𝑈(𝑡)

𝑑𝑥
|
𝑖=𝑛

 

=
𝑈𝑖−2(𝑡)−4𝑈𝑖−1(𝑡)+3𝑈𝑖(𝑡)

2ℎ
|
𝑖=𝑛

 

+
ℎ2

3

𝑑3𝑈(𝑡)

𝑑𝑥3
|
𝑖=𝑛

 

+

ℎ3

4

𝑑4𝑈(𝑡)

𝑑𝑥4
|
𝑖=𝑛

 

+ 𝑂(ℎ4). ………………………………………...17 

Substituting Eqs. (7) and (8) and the Neumann boundary 

conditions into (16) 

6
𝑑𝑈(𝑡)

𝑑𝑡
|
𝑖=0

 

− 4
𝑑𝑈(𝑡)

𝑑𝑡
|
𝑖=1

 

− 2
𝑑𝑈(𝑡)

𝑑𝑡
|
𝑖=2

 

 

= −
36𝛼

ℎ2
𝑈0(𝑡) +

48𝛼

ℎ2
𝑈1(𝑡) −

12𝛼

ℎ2
𝑈2(𝑡) + 6𝑓0(𝑡) − 4𝑓1(𝑡) −

2𝑓2(𝑡) − 
24𝛼

ℎ
�̌�(𝑡). ……………………………………………18 

Substituting Eqs. (9) and (10) and the Neumann boundary 

conditions into Eq. (16)  

6
𝑑𝑉(𝑡)

𝑑𝑡
|
𝑖=0

 

− 4
𝑑𝑉(𝑡)

𝑑𝑡
|
𝑖=1

 

− 2
𝑑𝑉(𝑡)

𝑑𝑡
|
𝑖=2

 

 

= −
36𝛽

ℎ2
𝑉0(𝑡) +

48𝛽

ℎ2
𝑉1(𝑡) −

12𝛽

ℎ2
𝑉2(𝑡) + 6𝑔0(𝑡) − 4𝑔1(𝑡) −

2𝑔2(𝑡) −  
24𝛽

ℎ
�̌�(𝑡).  ………………….……………………….19 

Similarly, one can obtain the right boundary conditions. 

−10
𝑑𝑈(𝑡)

𝑑𝑡
|
𝑖=𝑛−2

 

+ 28
𝑑𝑈(𝑡)

𝑑𝑡
|
𝑖=𝑛−1

 

− 18
𝑑𝑈(𝑡)

𝑑𝑡
|
𝑖=𝑛

 

 

=
12𝛼

ℎ2
𝑈𝑛−2(𝑡) −

48𝛼

ℎ2
𝑈𝑛−1(𝑡) +

36𝛼

ℎ2
𝑈𝑛(𝑡) − 10𝑓𝑛−2(𝑡) +

28𝑓𝑛−1(𝑡) − 18𝑓𝑛(𝑡) −
24𝛼

ℎ
�̂�(𝑡), …………………………….20 

and 

−10
𝑑𝑉(𝑡)

𝑑𝑡
|
𝑖=𝑛−2

 

+ 28
𝑑𝑉(𝑡)

𝑑𝑡
|
𝑖=𝑛−1

 

− 18
𝑑𝑉(𝑡)

𝑑𝑡
|
𝑖=𝑛

 

 

=
12𝛽

ℎ2
𝑉𝑛−2(𝑡) −

48𝛽

ℎ2
𝑉𝑛−1(𝑡) +

36𝛽

ℎ2
𝑉𝑛(𝑡) − 10𝑔𝑛−2(𝑡) +

28𝑔𝑛−1(𝑡) − 18𝑔𝑛(𝑡) −
24𝛽

ℎ
�̂�(𝑡). ……………………………21 

Therefore, by utilizing equation (14) along with the given 

boundary conditions, we derive a linear system of equations, 

which can be expressed in matrix form as a tri-diagonal linear 

system, as outlined below: 

𝑨1
𝑑𝑼(𝑡)

𝑑𝑡
= 𝑩1𝑼(𝑡) + 𝑭(𝑡) + 𝑯1(𝑡), …………………………22 

where 
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𝑨𝟏 =

[
 
 
 
 
6 −4 −2   
1 (12𝛼 − 2) 1   
 ⋱ ⋱ ⋱  
  1 (12𝛼 − 2) 1
  −10 28 −18]

 
 
 
 

, 𝑼(𝑡) =

[
 
 
 
 
𝑈0(𝑡)

𝑈1(𝑡)

𝑈2(𝑡)
⋮

𝑈𝑛(𝑡)]
 
 
 
 

 , 𝑩𝟏 =

[
 
 
 
 
 
 −

36𝛼

ℎ2

48𝛼

ℎ2
−
12𝛼

ℎ2
  

12𝛼2

ℎ2
−
24𝛼2

ℎ2

12𝛼2

ℎ2
  

 ⋱ ⋱ ⋱  

  
12𝛼2

ℎ2
−
24𝛼2

ℎ2

12𝛼2

ℎ2

  
12𝛼

ℎ2
−
48𝛼

ℎ2

36𝛼

ℎ2 ]
 
 
 
 
 
 

, 

𝑯1(𝑡) =

[
 
 
 
 
 
 
 − 

24𝛼

ℎ
�̌�(𝑡)

0
0
⋮
0

−
24𝛼

ℎ
�̂�(𝑡) ]

 
 
 
 
 
 
 

, 𝑭(𝑡) =

[
 
 
 
 
6𝑓0(𝑡) −4𝑓1(𝑡) −2𝑓2(𝑡)   

𝑓0(𝑡) (12𝛼 − 2)𝑓1(𝑡) 𝑓2(𝑡)   
 ⋱ ⋱ ⋱  
  𝑓𝑛−2(𝑡) (12𝛼 − 2)𝑓𝑛−1(𝑡) 𝑓𝑛(𝑡)

  −10𝑓𝑛−2(𝑡) 28𝑓𝑛−1(𝑡) −18𝑓𝑛(𝑡)]
 
 
 
 

. 

Similarly, by applying equation (15) in conjunction with the 

provided boundary conditions, we deduce a linear system of 

equations that can be represented in matrix form as a multi-

diagonal linear system, as described below: 

𝑨2
𝑑𝑽(𝑡)

𝑑𝑡
= 𝑩2𝑽(𝑡) + 𝑮(𝑡) + 𝑯2(𝑡), ………………………….23 

where 

𝑨𝟐 =

[
 
 
 
 
6 −4 −2   
1 (12𝛽 − 2) 1   
 ⋱ ⋱ ⋱  
  1 (12𝛽 − 2) 1
  −10 28 −18]

 
 
 
 

, 𝑽(𝑡) =

[
 
 
 
 
𝑉0(𝑡)

𝑉1(𝑡)

𝑉2(𝑡)
⋮

𝑉𝑛(𝑡)]
 
 
 
 

 , 𝑩𝟐 =

[
 
 
 
 
 
 
 −

36𝛽

ℎ2

48𝛽

ℎ2
−
12𝛽

ℎ2
  

12𝛽2

ℎ2
−
24𝛽2

ℎ2

12𝛽2

ℎ2
  

 ⋱ ⋱ ⋱  

  
12𝛽2

ℎ2
−
24𝛽2

ℎ2

12𝛽2

ℎ2

  
12𝛽

ℎ2
−
48𝛽

ℎ2

36𝛽

ℎ2 ]
 
 
 
 
 
 
 

, 

𝑯2(𝑡) =

[
 
 
 
 
 
 
 − 

24𝛼

ℎ
�̌�(𝑡)

0
0
⋮
0

−
24𝛼

ℎ
�̂�(𝑡) ]

 
 
 
 
 
 
 

, 𝑮(𝑡) =

[
 
 
 
 
6𝑔0(𝑡) −4𝑔1(𝑡) −2𝑔2(𝑡)   

𝑔0(𝑡) (12𝛽 − 2)𝑔1(𝑡) 𝑔2(𝑡)   
 ⋱ ⋱ ⋱  
  𝑔𝑛−2(𝑡) (12𝛽 − 2)𝑔𝑛−1(𝑡) 𝑔𝑛(𝑡)

  −10𝑔𝑛−2(𝑡) 28𝑔𝑛−1(𝑡) −18𝑔𝑛(𝑡)]
 
 
 
 

.

For more simplicity, we can write the ordinary differential 

equations (22) and (23) as follows: 

{

𝑑𝑼(𝑡)

𝑑𝑡
= 𝑨1

−𝟏𝑩1𝑼(𝑡) + 𝑨1
−𝟏𝑯1(𝑡) + 𝑨1

−𝟏𝑭(𝑡)

𝑑𝑽(𝑡)

𝑑𝑡
= 𝑨2

−𝟏𝑩2𝑽(𝑡) + 𝑨2
−𝟏𝑯2(𝑡) + 𝑨2

−𝟏𝑮(𝑡)
……………….24 

3. Explicit Runge-Kutta Method Algorithms 

The conventional sequence of steps in the explicit Runge-Kutta 

algorithm corresponds to an approximation of the initial terms 

present in an infinite Taylor series. This specific series is utilized 

for calculating the path taken by a moving point. Shampine and 

Gordon extensively investigated this concept in their research[10]. 

The local truncation error estimator (LTEE) refers to the portion 

of the infinite sum that remains after removal. These predictive 

forecasting techniques are known as explicit Runge-Kutta (ERK) 

algorithms. In essence, they forecast a point's future location 

independent of phase information from the past. Because of this 

characteristic, they require only a minimal amount of input data, 

making them straightforward to use and implement. The solution 

to an initial value problem is determined by utilizing the explicit 

Runge-Kutta (ERK) method, which incorporates 𝑝 stages: 

{

𝑑𝑼(𝑡)

𝑑𝑡
= 𝝍(𝑡, 𝑼(𝑡), 𝑽(𝑡) )

𝑑𝑽(𝑡)

𝑑𝑡
= 𝝓(𝑡, 𝑼(𝑡), 𝑽(𝑡) )

 ……………….…………………...25 

where 𝝍(𝑡, 𝑼(𝑡), 𝑽(𝑡) ) = 𝑨1
−𝟏𝑩1𝑼(𝑡) + 𝑨1

−𝟏𝑯1(𝑡) + 𝑨1
−𝟏𝑭(𝑡) 

and 𝝓(𝑡, 𝑼(𝑡), 𝑽(𝑡) ) = 𝑨2
−𝟏𝑩2𝑽(𝑡) + 𝑨2

−𝟏𝑯2(𝑡) + 𝑨2
−𝟏𝑮(𝑡) 

with the initial conditions are 𝑼(𝑡0) = 𝒖0 and 𝑽(𝑡0) = 𝒗0, will 

be determined as follows: 

{
𝑼𝑛+1 = 𝑼𝑛 + 𝜏∑ 𝑏𝑖𝒌𝑖

𝑝
𝑖=1 ,       

𝑽𝑛+1 = 𝑽𝑛 + 𝜏∑ 𝑏𝑖𝒌𝒌𝑖
𝑝
𝑖=1 ,       

……………….……………..26 

where 𝒌𝑖 = 𝝍(𝑡𝑛 + 𝑐𝑖ℎ, 𝑼 + 𝜏 ∑ 𝑎𝑖𝑗𝒌𝑗
𝑝
𝑗=1 , 𝑽 + ℎ∑ 𝑎𝑖𝑗𝒌𝒌𝑗

𝑝
𝑗=1 ), 

𝒌𝒌𝑖 = 𝝓(𝑡𝑛 + 𝑐𝑖ℎ, 𝑼 + ℎ∑ 𝑎𝑖𝑗𝒌𝑗
𝑝
𝑗=1 , 𝑽 + ℎ∑ 𝑎𝑖𝑗𝒌𝒌𝑗

𝑝
𝑗=1 ) and 

𝑐𝑖 = ∑ 𝑎𝑖𝑗
𝑝
𝑗=1 , 𝑖 = 1,2, … , 𝑝. 

Considering vectors 𝑐 and 𝑏, both having 𝑝 dimensions, along 

with matrix 𝐴(𝑎𝑖𝑗) of size 𝑝 × 𝑝. However, smaller values of 𝜏 

generally lead to more accurate results because they allow for 

more accurate approximations of the solution at each step. The 
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structure of the ERK algorithm for the system (24) can be 

described as follows: 

𝒌1 = 𝜏𝝍(𝑡𝑛, 𝑼𝑛 , 𝑽𝑛 ), 
𝒌𝒌1 = 𝜏𝝓(𝑡𝑛, 𝑼𝑛 , 𝑽𝑛 ), 

𝒌2 = 𝜏𝝍(𝑡𝑛 +
ℎ

4
,𝑼𝑛 +

𝒌1
4
, 𝑽𝑛 +

𝒌𝒌1
4
), 

𝒌𝒌2 = 𝜏𝝓(𝑡𝑛 +
ℎ

4
,𝑼𝑛 +

𝒌1
4
, 𝑽𝑛 +

𝒌𝒌1
4
), 

𝒌3 = 𝜏𝝍(𝑡𝑛 +
ℎ

4
,𝑼𝑛 +

𝒌1
8
+
𝒌2
8
, 𝑽𝑛 +

𝒌𝒌1
8
+
𝒌𝒌2
8
), 

𝒌𝒌3 = 𝜏𝝓(𝑡𝑛 +
ℎ

4
,𝑼𝑛 +

𝒌1
8
+
𝒌2
8
, 𝑽𝑛 +

𝒌𝒌1
8
+
𝒌𝒌2
8
), 

𝒌4 = 𝜏𝝍(𝑡𝑛 +
ℎ

2
,𝑼𝑛 −

𝒌2
2
+ 𝒌3, 𝑽𝑛 −

𝒌𝒌2
2
+ 𝒌𝒌3), 

𝒌𝒌4 = 𝜏𝝓(𝑡𝑛 +
ℎ

2
,𝑼𝑛 −

𝒌2
2
+ 𝒌3, 𝑽𝑛 −

𝒌𝒌2
2
+ 𝒌𝒌3), 

𝒌5 = 𝜏𝝍(𝑡𝑛 +
3ℎ

4
, 𝑼𝑛 +

3𝒌1
16

+
9𝒌4
16

, 𝑽𝑛 +
3𝒌𝒌1
16

+
9𝒌𝒌4
16

), 

𝒌𝒌5 = 𝜏𝝓(𝑡𝑛 +
3ℎ

4
, 𝑼𝑛 +

3𝒌1
16

+
9𝒌4
16

, 𝑽𝑛 +
3𝒌𝒌1
16

+
9𝒌𝒌4
16

), 

𝒌6 = 𝜏𝝍(𝑡𝑛 + ℎ,𝑼𝑛 −
3𝒌1
7
+
2𝒌2
7
+
12𝒌3
7

−
12𝒌4
7

+
8𝒌5
7
, 𝑽𝑛

−
3𝒌𝒌1
7

+
2𝒌𝒌2
7

+
12𝒌𝒌3
7

−
12𝒌𝒌4
7

+
8𝒌𝒌5
7

), 

𝒌𝒌6 = 𝜏𝝓(𝑡𝑛 + ℎ,𝑼𝑛 −
3𝒌1
7
+
2𝒌2
7
+
12𝒌3
7

−
12𝒌4
7

+
8𝒌5
7
, 𝑽𝑛

−
3𝒌𝒌1
7

+
2𝒌𝒌2
7

+
12𝒌𝒌3
7

−
12𝒌𝒌4
7

+
8𝒌𝒌5
7

). 

Predictor using a 5th-order Explicit Runge-Kutta method with six 

stages: 

{
𝑼𝑛+1 = 𝑼𝑛 +

1

90
(7𝒌1 + 32𝒌3 + 12𝒌4 + 32𝒌5 + 7𝒌6),               

𝑽𝑛+1 = 𝑽𝑛 +
1

90
(7𝒌𝒌1 + 32𝒌𝒌3 + 12𝒌𝒌4 + 32𝒌𝑘5 + 7𝒌𝒌6).  

……………….……………….……………….………………27  

The accuracy of the methods is assessed by calculating the 

absolute error, denoted as 𝐿abs, which is defined as follows: 

𝐿abs(𝑢) = |𝑢Exact(𝑥𝑖 , 𝑡) − 𝑈Approximate(𝑥𝑖 , 𝑡)|,   𝑖 = 1,2, … , 𝑛,  

……………….………………………….…………………….28 

𝐿abs(𝑣) = |𝑣Exact(𝑥𝑖 , 𝑡) − 𝑉Approximate(𝑥𝑖 , 𝑡)|,   𝑖 = 1,2, … , 𝑛.  

……………….………………………….…………………….29 

When exact solutions are unavailable, we rely on convergence 

studies, known solutions for simplified cases, error estimation, 

and physical reasoning for validation. The arrangement of the 

Butcher array in equation (26) assumes the subsequent 

configuration: 

0       

1

4
 1

4
      

1

4
 1

8
 

1

8
     

1

2
 0 −

1

2
 1    

3

4
 3

16
 0 0 

9

16
   

0 
−
3

7
 

2

7
 

12

7
 −

12

7
 

8

7
  

 7

90
 0 

32

90
 

12

90
 

32

90
 

7

90
 

4. Numerical Results 

We will now demonstrate the effectiveness of the higher order 

compact finite difference (HOCFD) method by implementing it 

using Matlab programming. Various functions for 

𝑓(𝑡, 𝑥, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)), and 𝑔(𝑡, 𝑥, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) have been 

chosen in this study.  

Example 4.1: If we take 𝑓(𝑡, 𝑥, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = 𝑎1𝑢 − 𝑏𝑢
2 −

𝑐𝑣𝑢 and 𝑔(𝑡, 𝑥, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = 𝑎2𝑣 − 𝑏𝑢𝑣 − 𝑐𝑣
2 , then the 

RDS (1) will become: 

{
𝑢𝑡 − 𝛼𝑢𝑥𝑥 = 𝑎1𝑢 − 𝑏𝑢

2 − 𝑐𝑣𝑢,

𝑣𝑡 − 𝛽𝑢𝑥𝑥 = 𝑎2𝑣 − 𝑏𝑢𝑣 − 𝑐𝑣
2,

 …………………………….30 

with the exact solution is given in the reference[11]:  

{
𝑢(𝑥, 𝑡) =

𝑎1𝑒
𝑎1𝑡

2+𝑏𝑒𝑎1𝑡+7𝑒𝑎2𝑡
(1 +

1

2
exp (

𝛼(𝑎2−𝑎1)

𝛼−𝛽
) sin (√

𝑎1−𝑎2

𝛼−𝛽
𝑥)) ,

𝑣(𝑥, 𝑡) =
1

𝑐

𝑎1𝑏𝑒
𝑎1𝑡+7𝑎2𝑒

𝑎2𝑡

𝑏𝑒𝑎1𝑡+7𝑒𝑎2𝑡+2
−

𝑏

𝑐
𝑢(𝑥, 𝑡).                                              

………………………………………………………………...31   

Example 4.2: If we take 𝑓(𝑡, 𝑥, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = 𝑎1𝑢 −

𝑏1𝑢
2 − 𝑐𝑣𝑢 and 𝑔(𝑡, 𝑥, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = −𝑎2𝑣 + 𝑏2𝑣𝑢 −

3𝑐𝑣2 , then the RDS (1) will become: 

{
𝑢𝑡 − 𝛼𝑢𝑥𝑥 = 𝑎1𝑢 − 𝑏1𝑢

2 − 𝑐𝑣𝑢,

𝑣𝑡 − 𝛽𝑢𝑥𝑥 = −𝑎2𝑣 + 𝑏2𝑣𝑢 − 3𝑐𝑣
2 ,

………………………...32 

with the exact solution is given in the reference[11]:  

{
  
 

  
 
𝑢(𝑥, 𝑡) =

3𝑎1+𝑎2

2(3𝑏1+𝑏2)
(1 + tanh (√

𝑎1𝑏2−𝑎2𝑏1

8(3𝑏1+𝑏2)
(𝑥 − 𝛾𝑡))),   

𝑣(𝑥, 𝑡) =
𝑎1𝑏2−𝑎2𝑏1

4𝑐(3𝑏1+𝑏2)
(1 + tanh (√

𝑎1𝑏2−𝑎2𝑏1

8(3𝑏1+𝑏2)
(𝑥 − 𝛾𝑡)))

2

,

 ..33          

where 𝛽 =
𝑎2𝑏1−3𝑎1(2𝑏1+𝑏2)

𝑎2(5𝑏1+𝑏2)−2𝑎1𝑏2
> 0,  and 𝛾 =

𝑎2𝑏1−3𝑎1(2𝑏1+𝑏2)

√2(3𝑏1+𝑏2)(𝑎1𝑏2−𝑎2𝑏1)
. 

Example 4.3: If we take 𝑓(𝑡, 𝑥, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = 𝛼(𝑎1𝑢 −

𝑏𝑢2 − 𝑐𝑣𝑢) and 𝑔(𝑡, 𝑥, 𝑢(𝑥, 𝑡), 𝑣(𝑥, 𝑡)) = 𝛽(𝑎2𝑣 − 𝑏𝑣𝑢 −

𝑐𝑣2), then the RDS (1) will become: 

{
𝑢𝑡 − 𝛼𝑢𝑥𝑥 = 𝛼(𝑎1𝑢 − 𝑏𝑢

2 − 𝑐𝑣𝑢),

𝑣𝑡 − 𝛽𝑢𝑥𝑥 = 𝛽(𝑎2𝑣 − 𝑏𝑣𝑢 − 𝑐𝑣
2),
                                               (34) 

with the exact solution is given in the reference [11]:  

{
 

 𝑢(𝑥, 𝑡) =
𝑎1

𝑏
−

1

2(𝑎1−𝑎2)𝑏
sin (√−

𝛾

𝛼
𝑥) 𝑒𝛾𝑡 ,

𝑣(𝑥, 𝑡) = −
1

2(𝑎2−𝑎1)𝑐
sin (√−

𝛾

𝛼
𝑥) 𝑒𝛾𝑡 ,          

                         

      (35) 

where 𝛾 =
(𝑎1−𝑎2)𝛼𝛽

𝛽−𝛼
< 0. 
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Table 1: 𝐿𝑎𝑏𝑠 errors between the solutions (27) and (31) for system (30) using the Higher Order Compact Finite Difference (HOCFD) method at  

t=1, where α =3/2, β =1, a_1=2, a_2=1, b=3, and c=5. 

𝒙 𝒖(𝒙, 𝒕) Exact 𝑼(𝒙, 𝒕)  
HOCFD 

𝑳𝒂𝒃𝒔(𝒖) 𝒗(𝒙, 𝒕) Exact 𝑽(𝒙, 𝒕)  
HOCFD 

𝑳𝒂𝒃𝒔(𝒗) 

-5 0.3361 0.3361 0 0.0917 0.0917 0 

-4 0.3471 0.3471 1.1295e-5 0.0851 0.0851 2.9512e-5 

-3 0.3497 0.3498 1.6255e-5 0.0835 0.0835 4.2834e-5 

-2 0.3395 0.3395 5.8029e-6 0.0897 0.0897 1.6608e-5 

-1 0.3337 0.3337 1.9242e-5 0.0931 0.0932 5.2365e-5 

0 0.3421 0.3421 2.8472e-7 0.0881 0.0881 2.0024e-6 

1 0.3505 0.3506 1.7324e-5 0.0831 0.0830 4.5400e-5 

2 0.3447 0.3448 5.1121e-6 0.0865 0.0865 1.2125e-5 

3 0.3345 0.3345 1.8010e-5 0.0927 0.0927 4.9977e-5 

4 0.3371 0.3371 1.2394e-5 0.0911 0.0911 3.5790e-5 

5 0.3482 0.3482 0 0.0845 0.0845 0 

 

Figure 1: Representational surfaces depicting the constituents u and v within solution compositions (27) and (31) of the system (30), with α =3/2, β 

=1, a1 = 2, a2 = 1, b=3, and c=5.
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Figure 2: Illustration of the absolute error assessment between solutions (27) and (31) for system (30) using the Higher Order Compact Finite 

Difference (HOCFD) method. 

Table 2: 𝐿𝑎𝑏𝑠 errors between the solutions (27) and (31) for system (30) using the Higher Order Compact Finite Difference (HOCFD) 

method at  t = 2, where a1 = 1,b1 = 1, a2 = 0.1, b2 = 10, c = 0.5, and α = 1. 

𝒙 𝒖(𝒙, 𝒕) Exact 𝑼(𝒙, 𝒕)  

HOCFD 

𝑳𝒂𝒃𝒔(𝒖) 𝒗(𝒙, 𝒕) Exact 𝑽(𝒙, 𝒕)  

HOCFD 

𝑳𝒂𝒃𝒔(𝒗) 

-5 0.1001 0.0979 3.8322e-2 0.2684 0.2300 2.2221e-3 

-4 0.1366 0.1361 5.8713e-2 0.4997 0.4410 4.4582e-4 

-3 0.1700 0.1728 5.5515e-2 0.7744 0.7189 2.8027e-3 

-2 0.1959 0.2013 3.5230e-2 1.0282 0.9930 5.3929e-3 

-1 0.2135 0.2199 2.2534e-2 1.2204 1.1979 6.4757e-3 

0 0.2243 0.2310 2.0088e-2 1.3474 1.3273 6.7445e-3 

1 0.2306 0.2374 2.1181e-2 1.4243 1.4031 6.8095e-3 

2 0.2342 0.2410 2.2415e-2 1.4686 1.4461 6.8616e-3 

3 0.2361 0.2430 2.3166e-2 1.4933 1.4701 6.9131e-3 

4 0.2372 0.2441 2.3664e-2 1.5069 1.4832 6.9433e-3 

5 0.2378 0.2447 2.4357e-2 1.5143 1.4900 6.9243e-3 
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Figure 3: Representational surfaces depicting the constituents u and v within solution compositions (27) and (33) of the system (32), with a1 =

1,b1 = 1, a2 = 0.1, b2 = 10, c=0.5, and α=1.

 

Figure 4: Illustration of the absolute error assessment between solutions (27) and (33) for system (32) using the Higher Order Compact Finite 

Difference (HOCFD) method. 
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Table 3: 𝐿𝑎𝑏𝑠 errors between the solutions (27) and (31) for system (30) using the Higher Order Compact Finite Difference (HOCFD) method at  

t=1, where α =3/2, β =1, a1 = 2, a2 = 1, b = 3, and c = 5. 

𝒙 𝒖(𝒙, 𝒕) 
Exact 

𝑼(𝒙, 𝒕)  
HOCFD 

 𝑳𝒂𝒃𝒔(𝒖) 𝒗(𝒙, 𝒕) 
Exact 

𝑽(𝒙, 𝒕)  
HOCFD 

𝑳𝒂𝒃𝒔(𝒗) 

0 5.5556 5.5556  0 0 0 0 

0.2560 5.5428 5.5423  3.4262e-3 0.2294 0.2328 4.6466e-4 

0.5120 5.5313 5.5306  6.4067e-3 0.4364 0.4428 6.8443e-4 

0.7680 5.5222 5.5213  8.7856e-3 0.6009 0.6097 8.6077e-4 

1.0240 5.5163 5.5153  1.0323e-2 0.7068 0.7171 9.7500e-4 

1.2800 5.5142 5.5132  1.0860e-2 0.7438 0.7546 1.0150e-3 

1.5360 5.5162 5.5152  1.0344e-2 0.7082 0.7186 9.7644e-4 

1.7920 5.5220 5.5212  8.8269e-3 0.6036 0.6125 8.6347e-4 

2.0480 5.5311 5.5304  6.4638e-3 0.4402 0.4466 6.8808e-4 

2.3040 5.5426 5.5421  3.4938e-3 0.2338 0.2373 4.6880e-4 

2.5600 5.5553 5.5553  0 0.0046 0.0046 0 

 

Figure 5: Illustration of the absolute error assessment between solutions (27) and (35) for system (34) using the Higher Order Compact Finite 

Difference (HOCFD) method.
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Figure 6: Representational surfaces depicting the constituents u and v within solution compositions (27) and (35) of the system (34), with α =1, β 

=1/3, a1 = 5, a2 = 2, b=0.9,  c=0.05, and γ=-1.5

Conclusion 

This work introduces a novel high-order compact finite 

difference (HOCFD) method designed to efficiently solve the 

challenges posed by the Reaction-Diffusion system. The central 

concept behind our approach is the integration of a 4th-order CFD 

method for spatial discretization and the utilization of an ERK 

scheme for time integration, resulting in a set of non-linear 

ordinary differential equations. Significantly, our suggested 

approach achieves a level of accuracy characterized by fourth-

order precision in spatial computations and fifth-order precision 

in temporal calculations. A key objective of our technique is to 

minimize the number of iterations required, thus significantly 

reducing the scheme's computational expense. We have 

rigorously demonstrated that our proposed approach excels in 

terms of computational efficiency and stability. Extensive 

computational tests conducted using Matlab programming further 

affirm the reliability and efficiency of our method in solving 

Reaction-Diffusion systems. Consequently, this research 

contributes a valuable tool to solve the Reaction-Diffusion 

system, offering an effective means of achieving accurate results 

with reduced computational expenses.  
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