Sentiment analysis is a domain in machine learning that tries to analyze people’s emotion, feeling, opinion and attitudes towards particular service or product. It aims to extract feelings and opinion from textual reviews; therefore, it is closely related to natural language processing (NLP). Social media has provided a huge amount of text reviews, which is practically impossible to read and analyze the emotions, attitudes and opinions that were expressed in those textual data. Sentiment analysis is a machine learning concept to classify a textual data according to reviewers’ emotion and attitudes about a service or product, which helps in determine strong or weak production. In this paper work we aim to develop a sentiment analysis model of texts for images. Different machine learning algorithms are tested such as Naive Bays, Logistic Regression and Support Vector Machine (SVM), in order to develop a high accuracy sentiment analysis system. The model is developed to determine whether a text has positive or negative emotion for images. The outcome of the project work shows that SVM algorithm has a better performance for such purpose, while Logistic Regression algorithm shows a faster execution time.


Machine learning, sentiment analysis, NLP model, Sentiment system, Machine learning model, Text mining



Document Type

Original article



To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.