•  
  •  
 

Abstract

Sentiment analysis is a domain in machine learning that tries to analyze people’s emotion, feeling, opinion and attitudes towards particular service or product. It aims to extract feelings and opinion from textual reviews; therefore, it is closely related to natural language processing (NLP). Social media has provided a huge amount of text reviews, which is practically impossible to read and analyze the emotions, attitudes and opinions that were expressed in those textual data. Sentiment analysis is a machine learning concept to classify a textual data according to reviewers’ emotion and attitudes about a service or product, which helps in determine strong or weak production. In this paper work we aim to develop a sentiment analysis model of texts for images. Different machine learning algorithms are tested such as Naive Bays, Logistic Regression and Support Vector Machine (SVM), in order to develop a high accuracy sentiment analysis system. The model is developed to determine whether a text has positive or negative emotion for images. The outcome of the project work shows that SVM algorithm has a better performance for such purpose, while Logistic Regression algorithm shows a faster execution time.

Keywords

Machine learning, sentiment analysis, NLP model, Sentiment system, Machine learning model, Text mining

Date

17-11-2020

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.