The Influence of Various Reactants in the Growth Solution on the Morphological and Structural Properties of ZnO Nanorods

Document Type : Original Article

Author

Faculty of Science, University of Garmian, Kalar, Iraq

Abstract

In the current work, the effect of three different Zinc (Zn) salts as reactants precursors in the growth solution on the characteristic properties of the Zinc oxide (ZnO) nanorods (NRs) was investigated and reported. High quality hexagonal ZnO NRs have been grown on the glass-slide substrates via the chemical-bath deposition (CBD) approach at 90 ºC. The radio-frequency sputtering (RF) technique has been used to coat the 150 nm of ZnO nano-seed layer over the whole glass-slide substrates. The Field-emission scanning electron microscopy (FESEM), the Energy-dispersive characterization (EDX), and the X-ray diffraction (XRD) characterizations have been used to characterize and examination of the morphological, chemical compositional, and structural characteristics with ZnO hexagonal-wurtzite structure of the NRs. The used zinc salts were Zinc-nitrate Hexahydrate (ZNH), Zinc-acetate (ZA), and Zinc-chloride (ZC). The FESEM and XRD results indicated that the change in types of Zinc salts with Methenamine as reactants precursors in the growth (deposition) solution have a remarkable and significant impact on the surface topography (morphology) characteristics and structural characteristics of synthesized ZnO NRs. The average size and average length of the grown ZnO NRs were in the range of (91-529) nm and (1008-3189) nm, respectively. The high aspect ratio was obtained of ZnO NRs synthesized from Zinc-nitrate Hexahydrate salt and was about 11. The highest growth rate was investigated ZnO NRs synthesized from Zinc-chloride salt and was about 17.716 nm/min. The average crystalline size of synthesized ZnO nanorods was in the range (48.35-56.06) nm

Keywords

  1. Morkoc, H. Ozgur, U., General Properties of ZnO, in Zinc Oxide: Fundamentals, materials and device technology, Wiley-VCH Verlag GmbH & Co. KGaA, 1-76, (2009).
  2. P. Suresh Kumar, M. Yogeshwari, A. Dhayal Raj, D. Mangalaraj, D. Nataraj1, and U. Pal, Synthesis of Vertical ZnO Nanorods on Glass Substrates by Simple Chemical Method, Journal of Nano Research 5, 223-230, (2009).
  3. Ahmed F. Abdulrahman, Sabah M. Ahmed, Naser M. Ahmed & Munirah A. Almessiere, Different Substrates Effects on the topography and the structure of The ZnO Nanorods Grown By Chemical Bath Deposition Method, Digest Journal of Nanomaterials and Biostructures 11(3), 1007, (2016).
  4. Kyung Ho Kim, Kazuomi Utashiro, Yoshio Abe, and Midori Kawamura, Growth of Zinc Oxide Nanorods Using Various Seed Layer Annealing Temperatures and Substrate Materials, Int. J. Electrochem. Sci. 9, (2014).
  5. S.S. Shinde, K.Y. Rajpure, High-performance UV detector based on Ga-doped zinc oxide thin films, Appl. Surf. Sci. 257, 9595–9599, (2011).
  6. Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, B. J. Kim, Y. S. Park, and C. J. Youn, Next generation of oxide photonic devices: ZnO-based ultraviolet light-emitting diodes, Appl. Phys. Lett. 88 (24), 241108, (2006).
  7. A.I. Hochbaum, P. Yang, Semiconductor nanowires for energy conversion”, Chem. Rev., 110, 527, (2010).
  8. Hey-Jin L., Deuk Y. L. and Young O., Gas sensing properties of ZnO thin films prepared by microcontact printing, Sensors and Actuators A: Physical, 125 (2), 405-410, (2006).
  9. Marte R, Schmidt T, Shea H R, et al., Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73 (17):2447-2449 (1998).
  10. Abdulrahman, A.F. The effect of different substrate-inclined angles on the characteristic properties of ZnO nanorods for UV photodetectors applications. J Mater Sci: Mater Electron 31, 14357–14374, (2020). https://doi.org/10.1007/s10854-020-03995-3
  11. M.H. Huang, S. Mao, H. Feick, H.G. Yan, Y.Y. Wu, H. Kind, E. Weber, R. Russo, P.D. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers, Science 292, 1897, (2001).
  12. W.I. Park, D.H. Kim, S.W. Jung and G.C. Yi, Metal-organic vapor-phase epitaxial growth of vertically well-aligned ZnO NRs, Appl. Phys. Lett. 80, 4232, (2002).
  13. Suh H W, Kim G Y, Jung YS, Choi WK, Byun D, Growth and properties of ZnO nanoblade and nanoflower prepared by ultrasonic pyrolysis, J. of Applied Physics 97(4), 044305, (2005).
  14. G. Yi, C. Wang and W.I. Park, ZnO nanorods: synthesis, characterization and applications, Semicond. Sci. Technol. 20, S22, (2005).
  15. Huang, T. H., C., Mitch, M.C., UWE, J., Formation mechanism of (0001) ZnO epitaxial layer on γ-LiAlO2 (100) substrate by chemical vapor deposition semiconductor devices, materials & processing, J. Electrochem. Soc.158, 38, (2011).
  16. D. Montenegro, V. Hortelano, O. Martinez, M. Martínez Tomas, V. Sallet,V. Muñoz-Sanjosé, J. Jiménez, Influence of metal organic chemical vapor deposition growth conditions on vibrational and luminescent properties of ZnO nanorods, J. Appl. Phys.113, 143513–143519, (2013).
  17. J.H. Choi, H. Tabata, T. Kawai, J. Cryst. Growth 226,493, (2001).
  18. P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi, Controlled Growth of ZnO nanowires and their optical properties, Adv. Funct. Mater.12,323, (2002).
  19. J.Y. Lee, Y.S. Choi, J.H. Kim, M.O. Park, S. Im, Optimizing n ZnO/PSi heterojunctions for photodiode applications, Thin Solid Films 403,553, (2002).
  20. Guo HH, Zhou J Z, Lin Z H., ZnO nanorod light-emitting diodes fabricated by electrochemical approaches, Electrochem. Commun. 10 (1),146-150, (2008).
  21. Xu, C. X.; Sun, X. W.; Dong, Z. L.; Yu, M. B., Zinc oxide nanodisks, Appl. Phys. Lett. 85, 3878–3880, (2004).
  22. M.G. Ambia, M.N. Islam, M.O. Hakim, The effect of deposition variables on the spray pyrolysis of ZnO thin film, J. Mater. Sci. 29, 6575-6580, (1994).
  23. A. F. Abdulrahman, S. M. Ahmed, N.M. Ahmed and M. A. Almessiere, “Novel Process Using Oxygen and Air Bubbling in Chemical Bath Deposition Method for Vertically Well Aligned Arrays of ZnO Nanorods, Digest Journal of Nanomaterials and Biostructures 11 (4), 1073-1082, (2016).
  24. A. F. Abdulrahman, S. M. Ahmed, N.M. Ahmed, and M. A. Almessiere, Enhancement of ZnO Nanorods Properties using Modified Chemical Bath Deposition Method: Effect of Precursor Concentration, Crystals 10, 386, (2020). doi:10.3390/cryst10050386.
  25. A.F. Abdulrahman, S. M. Ahmed and N. M. Ahmed, The Influence of the Growth Time on the Size and Alignment of ZnO Nanorods, Science Journal of UOZ 5(1), 128-135, (2017).
  26. A. F. Abdulrahman, Study the Optical Properties of The Various Deposition Solutions of ZnO Nanorods Grown on Glass Substrate Using Chemical Bath Deposition Technique, Journal of Ovonic Research 16(3), 181–188, (2020).
  27. A. F. Abdulrahman, S. M. Ahmed, N. .M Ahmed and M. A. Almessiere, Fabrication, characterization of ZnO nanorods on the flexible substrate (Kapton tape) via chemical bath deposition for UV photodetector applications, AIP Conference Proceedings 1875(1), 020004, (2017).
  28. G. Amin, M.H. Asif, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures were grown by the hydrothermal method, J. Nanomater. (2011).
  29. A. F. Abdulrahman, S. M. Ahmed and M. A. Almessiere, Effect of the Growth Time on the Optical Properties of ZnO Nanorods Grown By Low-Temperature Method, Digest Journal of Nanomaterials and Biostructures 12(4),1001-1009, (2017).
  30. J. Kühnle, R.B. Bergmann, J.H. Werner, Role of critical size of nuclei for liquid-phase epitaxy on polycrystalline Si films, J. Cryst. Growth 173,62–68, (1997).
  31. A. F. Abdulrahman, S. M. Ahmed, and N. M. Ahmed, Investigation of Optical Properties of ZnO Nanorods Grown on Different Substrates, Science Journal of UOZ 6(4),160 –165, (2018).
  32. D. Vernardou, G. Kenanakis, S. Couris, E. Koudoumas, E. Kymakis, N. Katsarakis, pH effect on the morphology of ZnO nanostructures grown with aqueous chemical growth, Thin Solid Films 515 8764–8767, (2007).
  33. M. Kashif, U. Hashim, M.E. Ali, S.M. Usman Ali, M. Rusop, Z.H. Ibupoto, M. Willander, Effect of different seed solutions on the morphology and electro-optical properties of ZnO Nanorods, J. Nanomater. (2012).
  34. B.D. Cullity, Elements of diffraction, Addison-Wesley publishing-companyinc., (1978).
  35. A. K. Qasim, L. A. Jamil, and A. F. Abdulrahman, Synthesis of Rutile-Tio2 Nanorod Arrays for Efficient Solar Water Splitting Via Microwave-Assisted Hydrothermal Method, Digest Journal of Nanomaterials and Biostructures 15(1), 157 - 165, (2020).
  36. A.H. Kurda, Y.M. Hassan, N.M. Ahmed, Controlling Diameter, Length, and Characterization of ZnO Nanorods by Simple Hydrothermal Method for Solar Cells, World J. Nano Sci. Eng. 5, 34–40 (2015).
  37. M. Gusatti, C.E.M. Campos, D.A.R. Souza, V.M. Moser, N.C. Kuhnen, H.G. Riella, Effect of reaction parameters on the formation and properties of ZnO nanocrystals synthesized via rapid sonochemical processing, J. Nanosci. Nanotechnol. 13, 8307–8314, (2013).